home

EPI: Enabling Personal Interventions.

http://sne.science.uva.nl/ http://uva.nl/

Introduction:

Knowledge is power -- and in healthcare, that holds absolutely true. Yet, for an industry that is under financial stress, increasing complexity of disease and comorbidity, and burdened by capacity constraints -- why has data not been healthcare’s savvier? Three major challenges have inhibited this:

  1. data is not accessible and remains in siloes;
  2. data is not analysed to derive meaningful clinical insights;
  3. insight isn’t accessible for actioning by providers or patients to self/joint manage their condition.

Our consortium of medical professionals, data scientists, ICT-infrastructure experts, machine learning researchers and legal experts have designed Enabling Patient Interventions to liberate, analyse, and action that data in a trustworthy way.
EPI aims to empower patients and providers through self-management, shared management, and personalization across the full health spectrum. To do so, we will build a fuller picture of the person by linking traditional eHealth data sets with new sources of data. Further, we will develop a platform based upon a secure and trustworthy distributed data infrastructure, combining data analytics, including machine learning, and health decision support algorithms to create new, actionable, and personalized insights for prevention, management, and intervention to providers and patients. We will develop new machine learning methods for determining and analysing optimal interventions within small patient groups.
Our insights will be applied in healthcare use cases representing a spectrum of health management challenges ranging from common chronic to highly lethal orphan diseases, and will empower better self/joint management of these conditions to improve cost, quality, and outcomes of care.

Research topic
The overall aim of this project is to explore the use and effectiveness of data driven development of scientific algorithms, supporting personalized self- and joint management during medical interventions / treatments. The key objective is to use data science promoting health practically with data from various sources to formulate lifestyle advice, prevention, diagnostics, and treatment tailored to the individual, and to provide personalized, effective, real-time feedback via a concept referred in this proposal as a digital health twin. The project addresses six research questions:

  1. Dynamically Analyzing Interventions based on Small Groups: how can we determine, based on as little data as possible, whether an intervention does or does not work for a small group or even an individual patient?
  2. Dynamically Personalizing the Group: how can we identify effective intervention strategies and optimize personalization strategies applicable for different patient and lifestyle profiles via dynamic (on-line) clustering of patients? Can those clusters be adapted as new data about patients and results of interventions come in and as other data may be removed or modified?
  3. Data and Algorithm Distribution: what are the consequences of a distributed, multi-platform, multi-domain, multi-data-source big data infrastructure on the machine learning algorithms and what are potential consequences on performance?
  4. Adaptive health diagnosis leading to optimized intervention: how can we enhance self- / joint management by dynamically integrating updated models generated from machine learning from various data sources in state of the art health support systems that based on personal health records, knowledge of health modes and effective interventions?
  5. Regulatory constraints and data governance: how can we create scalable solutions that meet legal requirements and consent or medical necessity-based access to data for allowed data processing and preventing breaches of these rules by embedded compliance, providing evidence trails and transparency, thus building trust in a sensitive big data sharing infrastructure?
  6. Infrastructure: how can the various requirements from the use-cases be implemented using a single functional ICT-infrastructure architecture?

References:

  1. Leon Gommans, John Vollbrecht, Betty Gommans - de Bruijn, Cees de Laat, "The Service Provider Group Framework; A framework for arranging trust and power to facilitate authorization of network services.", Future Generation Computer Systems, (Accepted paper), June 2014
  2. Leon Gommans, "Multi-Domain Authorization for e-Infrastructures", UvA, Dec 2014.
  3. Internet2 2012 session: "Trust Framework for Multi-Domain Authorization".
    • speakers: Leon Gommans , John Vollbrecht, chair:  Cees de Laat.
  4. Managing Our Hub Economy, Marco Iansiti, Karim R. Lakhani, Harvard Business review, September-October 2017 issue, [local copy]
  5. NWO press release: Enabling Personalized Interventions - EPI.

Outcome:


2018-05-09 Session organized by Cees de Laat (chair) at Internet2 Summit, Washington, May 9, 2018; "Digital Marketplaces Using Novel Infrastructure Models."
_ 2017-02-24 Report from NWO/STW Workshop “ICT with Industry 2016” Lorenz Centre Leiden, Nov. 7-11th 2016; Prof. dr. Tom M. van Engers (UvA), Prof. dr. Robert Meijer (UvA, TNO), Dr. ing. Leon Gommans (Air France KLM Group ICT Technology Office R&D, UvA), Dr. Kees Nieuwenhuis (Thales Nederland B.V., CTO Office), "Trusted Big Data Sharing for Aircraft MRO using a Secure Digital Market Place mechanism."
_ __________