Project Report for Project Shared Parallel File
System

Fangbin Liu
fliu@os3.nl

04-02-2006

Abstract

In recent years, shared parallel file system has been a new hot area for the
high throughput computing. Many systems have been developed for this
purpose, which include PVFS2 and GFS. These systems were being studied
in my project.

In this project, the concept of such a shared parallel file system has
been built up by installing it on four nodes of the LISA cluster at SARA
(Stichting Academische Rekeningcentrum Amsterdam). After the Installa-
tion of PVFS2 and GFS, a number of experiments have been organized to
compare the performance of two file systems. The results are discussed in
the experiment section of this report.

The installation of PVFS2 and GFS as well as how to configure such
file systems on the LISA cluster nodes are also described in this report.

In this report, the following aspects have been included:

1. Background information about shared parallel file system.
2. The PVFS2 files system.

3. The GFS file system.

4. The comparison of two file systems.

5. What problems could be encountered when exploring the possibility
of the maximum performance of two systems.

6. At the end, the conclusion of this project comparing two file systems
and the recommendation for the usage by SARA.

Contents

|1 Background information on Parallel File Systeml| 3
2 2 File Syste 5
[2.1 Introduction of PVFS2 File System|.)
2.2 Features of PVFS2 File System| 7
2.3 Deployment of PVFS2 File system| 7
[3 GFS File System| 9
[3.1 Introduction of GFS File System| 9
[3.2 Deployment of GFS File system|. 10

|4 Comparison between PVFS2 and GFS| 13
4.1 Work Theory| 13
4.2 Test of Performancel 14
421 Test Conditions|. 15

422 TestSetd 15

4.2.3 Test Program|. 15

424 Test Resultsl. 16

6 Future work and conclusions| 21
5.1 Project Conclusions| 21
BEIT PVES2o e 21

1.2 GES 22

b2 Futureworkl. o 22

|A Installation of PVFS2 and GFS file system on the local |
[_serverl 24
|A.1 Installation Steps of PVES2l 24
[A.2 Installation Steps ot GES| 27

B Experiment result presentation|

31

Chapter 1

Background information on
Parallel File System

In this chapter, the concept of parallel file system is introduced. Then, a
short review about the present development of distributed file systems will
be given, as well as the utilities.

With the fast development of software production, the speed of CPU
and raw computering power of industry conmodity PCs tends to get more
and more out of pace. Following this trend, many solutions for this problem
have been implemented worldwide. High Throughput Computing is one
area emerging out of this trend. From now on, this set of words are
presented here with an abbreviation as “HTC”.

For HTC, the importance does not sit in the achievement of the
performance of the system per second or per hour. Rather than that,
interest here stands in the quantities of operations a system is capable of
handling within a longer period, like one month or even more. To achieving
an optimal performance for this kind of evaluations, a huge number of work
stations are assembled in a parallel manner to optimize the performance.
Also, to improve the throughput of a system, it is believable that different
sort of resources should be utilized. In this way, a high throughput can
be still achieved even though some resources might defect during the job
execution for all kinds of unknown reasons.

In such an environment, a massive amount of data will be generated.
These data must be stored in such a way that the performance of the work

stations can not be violated. Also, at the same time, these data can also
be accessed by multiple programs on diverse nodes in the system. As a
result, the storage devices in such a environment must be able to supply
services for all the nodes in the system in a optimal manner. For this pur-
pose, effect of I/O operations on the system performance must be minimized.

At this moment, many system use NF'S as its file system which stands for
Network File System. In this system, multiple clients have to communicate
with one server where all the data are stored and accessed. As a result, this
server has been a bottleneck for the performance of whole system. when
the number of clients increases, the load of server would become extremely
huge.

Some new file systems have been implemented in the last few years
worldwide, among which PVFS2 and GFS sit, to solve the problem
mentioned above. These two file systems are both good at supplying a
parallel manner for file storage and access management. They both provide
a interface for the nodes in the system to communicate with storage
device, and a storage device management entity. With this structure of
the system, storage devices can be extended gradually and integrated into
a kind storage “pool” for the utilization later. More than just a storage
management system, both of these systems are able to supply a monitoring
function. They are able to monitor the states of storage devices in the
system. By distributing the job among diverse devices, the load balancing
effect between different storage nodes can be realized.

In the recent years, the parallel file systems have been used in many
different network systems in companies and research institutes. In this way,
a huge monetary save has been realized through utilizing multiple low-cost
work stations than supercomputers.

Chapter 2

PVFS2 File System

As a new parallel file system developed in the recent year, the PVFS2 system
will be introduced in this section. A global description of this system will be
given and also the main functionalities the system supplies us. More details
about PVFS2 system could be found in book [1].

2.1 Introduction of PVFS2 File System

As stated in [I], PVFS2 is a parallel file system. It can be used for multiple
programs to access one shared data storage device in a coordinated manner.
In PVFS2 file system, many servers can be used to supply the access to the
stored data. In this way, multiple paths to the data storage can be realized.
Also, a high performance can be supplied since the data in this system can
be accessed in a really parallel manner. This feature can not be found in
many other distributed file systems.

In PVFS2 file system, every server can be used in two ways as shown
in figure In the first way, the server can be used as one of the parallel
data servers. In this way, the server is responsible for the management and
access of data stored on the local disks. In the other way, a server can
play a role as metadata server which does not manage the file data itself
but the meta data about the file. No matter which role the server plays,
the data managed by this server will all be stored in the local disk. When
the server starts, it will read the configuration file to find out which role it
need to play. In the PVFS2 file system, the file data is just stored in the
UNIX files and the metadata is mostly stored in the Berkeley DB database.
An API called Trove has been built in the PVFS2 file system to hide the

d N

PVES2 PVES2 PVES?2

Servers/ Servers/ Servers/

Client Client Client
Shared Files

Figure 2.1: PVFS2 File System

management of these file data and metadata.

At this moment, two low—level I/O interface has been supplied by
PVFES2. The client can use normal UNIX API presented on his system to
communicate with PVFS2 server. In this manner, a kernel module must be
loaded. It will export the functions to user—space. Then, a UNIX process,
called pvfs2—client, will handle the communication with the PVFS2 servers.
The other interface is called MPI—IO interface. For this interface, the
ROMIO MPI-IO implementation is used to link directly to low—level
PVFS2 application interface to access data on servers.

In the PVFS2 file system, no locking algorithm is used. Instead of it, a
access sequence algorithm has been implemented. The PVFS2 file system
force all the operations who intend to modify the file system hierarchy to
be carried out in a special manner. For this manner, every access will be
performed in a number of steps. As a result, every access can be viewed as
a atomic operation and the file system hierarchy is always in a consistent
state. In this way, the file system consistency can be held successfully.

2.2

Features of PVFS2 File System

PVFS2 file system supplies many new features in the latest version. Some
of them will be listed below:

2.3

Ease of installation.

As mentioned about, multiple interfaces are supported by PVFS2 such
as MPI-IO and UNIX IO.

For PVFS2, no special network and storage hardware needed to be
used. Commodity networks and storage hardware can be applied over-
all.

Another strong point of PVFS2 file system is that it is designed in
modular manner. For network communication, a Buffered Messag-
ing Interface (BMI) has been used. For local data management, the
storage interface called Trove supplies API for it.

In PVFS2, the metadata does not need to be stored on one server. In-
stead they can be stored on multiple servers. In this way, applications
accessing different data do not need to impact each other any more.

Deployment of PVFS2 File system

To set up a PVFS2 file system over a cluster. The next steps need to be
completed. More details can be found in the book [2].

1.

2.

Untarring the packages downloaded from the website.

Building and installing the packages with “configure”, “make”, “make
install”.

. Configuring the server with command “pvfs2-genconf”.

Transferring the configuration files over the servers in cluster.
Starting the servers with command “pvfs2-server”.
Configuring the client in the file “/etc/pvfs2tab”.

Preparing Linux kernel with “configure”.

Loading the kernel module “pvfs2.ko”.

9. Starting the clients with command “pvfs2-client”.

10. Mounting the PVFS2 file system

Chapter 3

GF'S File System

As another parallel file system developed in the recent year, the GFS file
system will be introduced in this section. Like in previous chapter, a global
description of this system will be given and also the main functionalities
the system supplies us will be discussed here. More details about GFS file
system could be found in book [3].

3.1 Introduction of GFS File System

As stated in the document [3], Red Hat GFS is a cluster file system that
is available with Red Hat Cluster Suite. In GFS file system, the cluster
node is managed by Red Hat cluster management tools. GFS will supply a
uniform and consistent view of the data storage among the Red hat cluster
nodes. The cluster node does not need to care about how the data storage
is implemented under the GFS file system or which infrastructure is used
to store data.

Also, multiple paths are supported in the GFS file system. This feature
can be realized with a SAN network for the storage devices. In This way,
the storage devices can be applied by many different servers. This feature
could help file system to realize the load balancing amount many servers.
Also, it can help to built up a more robust system, allowing unpredictable
server failure.

GFS can be installed either directly on the SAN devices, or on GNBD
(Global Network Block Device) storages. A superior performance and
scalability can be achieved by SAN storage, whereas a easy establishment

can be realized with GNBD servers connected with LAN.

A GFS file system is built up with some logical volumes. These logical
volumes are managed by CLVM (Cluster Logical Volume Manager), a
cluster enabled logical volume manager. CLVM creates the logical volumes
using physical volumes located on diverse servers. These physical volumes
is held by alternative servers distributed across the network. In this way,
users will not need to care where the data is stored and how to access it.
Users will directly access data located in the logical devices in the same
way as accessing the data on local disk.

In this project, a GFS file system has been built up with GNBD devices
connected with LAN as shown in the figure [3.1

3.2 Deployment of GFS File system

Before loading GF'S file system, a number of packages from diverse developer
teams need to be installed. The main steps will be discussed below. More
details can be found in appendix.

1. First of all, a cluster must be established. The cluster configuration
tools and servers can be achieved from Cluster Configuration System
package, called ccs.

2. Then, GNBD package need to be installed to set up GNBD tools and
servers.

3. Further, the Cluster LVM package needs to be installed to achieve the
LVM cluster support.

4. To be able to run a cluster, the cluster management package “cman”
need to be installed.

5. Also, fence package needs to be installed to isolate the failing servers.

6. In the end, a lock algorithm must be selected. There are normally two
options: Distributed Lock Manager (dlm) and Grand Unified Locking
Manager (gulm).

7. To start the GFS file system, a cluster must be formed through the
distributed joining to the cluster.

10

Client Client Client

/I\ // \

)|

] /\/w \\ »
} \s&haﬁed 1les \
o

GNBD GNBD GNBD
Servers Servers Servers

UE [F BF

Figure 3.1: GFS and GNBD with Directly Connected Storage

11

8. Next, the GNBD devices need to be published overall and the logical
volume need to be created upon the physical volume.

9. After all, the GFS file system can be loaded on the created logical
volume. Till this point, the logical device can be mounted on a mount
point locally and be further accessed.

12

Chapter 4

Comparison between PVFS2
and GFS

In this section, the two file systems described in the previous chapters will
be compared from alternative viewpoints. Firstly, the comparison will be
made from the point of the internal Working theories and the features sup-
plied. After this analysis, the test results in this project will be discussed to
compare the difference of the two file systems’ performance. Also, the test
settings and test operations will be supplied in this section.

4.1 Work Theory

From the point of user, both of systems hide the file storage allocation
underneath a file system access interface. A client does not need to specify
the physical destination of the file operation. The remote and local storage
device can be directly mount on a point in the system directory hierarchy.
But, on the other hand, in PVFS2 system, the storage server can also be
the client within the system. Every node can act more than one role. Also,
every client in PVFS2 system can mount different remote servers. In this
way, the work load will be better distributed and balanced.

But, in GFS file system, a cluster logical volume manager (clvind) is
used. It is responsible for the data exchange between various servers. Also,
to generate a logical volume, a volume group must be firstly made. This
volume group includes all the physical volumes within the system. To create
such a volume group among all the storage servers, in GF'S system built up
in this project, GNBD (Global Network Block Device) are exported and

13

imported between alternative servers. As a result, these servers can no
longer create file system on the local disks which means the flexibility of
the system is reduced significantly.

Since the logical volumes are used to store data in GF'S system, the user
will not be able to specify which servers will be utilized specially for himself.
All the data from alternative users will be managed by cluster logical
volume manager on diverse servers. This could generate some peak time
at some moment when many clients try to access one logical volume ex-
cept for the case that the client mount a special volume in the volume group.

Another important difference between PVFS2 and GFS is the locking
algorithm. In the previous chapters, it has been shown that PVFS2
applies no locking method while GFS utilizes distributed lock manager to
manage it. As a result, PVFS2 system becomes a stateless system. This
property significantly the failure process when some client fails or crashes.
When a client fails with its operations, the system does not need to carry
out a complex sequence of operations to recover the system or locking
re-validating. It can seamless continue to work as normal.

When a new server needs to be installed into the system, PVFS2 master
server need to generate a new configuration file for it and for all the other
servers also. This point can make PVFS2 system to be not such a good
scalable system. On the other hand, For GFS, system, there is no master or
slave, but well a cluster domain. Every node need to join the domain before
it can be accessed by others. This feature enables the cluster domain to
be simple to distribute and grow. The storage management is supplied by
cluster logical volume manager. The new added server just needs to export
his local disk to others and let clvimd to extend the volume group. In this
way, the new storage device can be added and removed dynamically.

4.2 Test of Performance

To test two file systems performance, a number of 10 tests have been or-
ganized on the four nodes of lisa cluster allocated for this project. After
introducing how these experiments have been set up, the experiment re-
sults will be presented. Then, a short discuss will be found about some
consequences found in the results.

14

4.2.1 Test Conditions

Four test nodes from LISA cluster at SARA (Stichting Academische Reken-
ing Amsterdam) have been adopted in the experiments for this project. On
each of this nodes, a P4 3G CPU with 2M second level cache has been in-
stalled. The memory size for every node is 2G. These four nodes have been
connected with a gigabit Ethernet network.

4.2.2 Test Sets

Both PVFS2 and GFS file systems have been tested with one client and
three servers and with two clients and two servers at each time. In this way,
it can been probably seen what the effect is if we add more nodes to these
file systems. In other words, the scalability and robustness can be shown in
this way.

4.2.3 Test Program

The test program in the project to test the 10 performance of the two files
systems, PVFS2 and GFS, has been suggested to be lozone. This program
is a file system benchmark tool. The benchmark generates and measures a
variety of file operations such as write, rewrite, read, reread, and so forth.

For the experiments in this project, the next options have been involved
to test the system performance:

-a Used to select full automatic mode: Produces output that covers all
tested file operations for record size of 4K to 16M for file sizes of 64K
to 512K.

-i Used to specify which test to run. In the tests here, 0(=write/re-write)
and 1(=read/re-read) are used

-g + a number, set maximum file size (in Kbytes) for auto mode (-a)

-R Generate Excel report. Iozone will generate an Excel compatible report
to standard out.

-b + filename, Iozone will create a binary file format file in Excel compatible
output of results.

15

Difference of Read Performance for Record size

0
Tl || e
20 | :
150 |
1000 |
50 |

MB/ sec

-—
\\\\\\\\\\\\ nrn

0 . . —
b4 1024 16384 262144 4194304
KB File

Figure 4.1: Comparison of Read performance for record size 128 KB

4.2.4 Test Results

Many experiment results have been achieved from the tests, but because
of the space here, only the most important and most clear results will be
presented here, more data can be found in the appendix B.

In figure the difference of the read operations between gfs file
system and local file system can be seen. This test has been carried out
with 3 nodes as servers and one node as client. The X axis shows the file
size and y axis shows the operations in every second. It can be seen that
the read performance for both systems does not change so much when the
size of file grows up gradually.

In this picture, it also shows the fact that the difference of performance
between local XFS file system and GFS parallel file system is not so big
when the number of clients are not so big, especially after the file size

become bigger and bigger.

One important reason for this consequence is the fact that in GFS

16

Difference of Write Performance for Record size

L
100 |
o | T

B0 \

w

| \

0 -
64 104 o4 4104304

MB/ sec

16384
KB File

Figure 4.2: Comparison of Write performance for record size 128 KB

file system, logical volume has been generated in a striped manner which
enables clients to be able to read multiple sections of files in a parallel
way. Further we can still see this effect in figure which shows the write
performance difference between gfs file system and local file system.

On the figure the performances for write operation in GFS system
with 2 servers and 3 servers has been compared. Firstly, it can be obvious
that the performance does not change so much when more servers are
utilized in the system. It means that when more servers will generate a
significant better performance for the system.

Another interesting point from figure [£.3]is that the effect of cpu cache
and memory cache can also be seen. When the file size become bigger
than 1MB, a “step—effect” can be detected in the performance lines for
both number of servers. This consequence comes from the fact that the file
size does not fit the size of cpu cache anymore and thus must be accessed
from the memory each time the file be read and wrote. A more significant
step can be found when the file size becomes even bigger, bigger than the
memory size. As a result, the file must be accessed each time from the real

17

Difference of Write Performance for Record size

FooL L
BTN
?ﬁ 500 : \“ : \/ " —=-3 servers
:) -
0 | - N
0 | N

64 1024 16384 %6244 4194304
KB File

Figure 4.3: Comparison of Read performance for record size 128 KB

disk but not be able to saved in the system memory. In this way, the 10
performance falls down obviously. A clearer example can be seen in the
next figure

From these two figures, the effect from client system memory can be
seen clearly, but not the server system memory or cache, since in this
project, the GFS file system has been built up with GNBD servers who
exports his disks without caching effect. Thus, performance will also not
increase with more server caches.

In figure the write performance of PVFS2 file system can be seen
when two servers are used in the system. Further in figure the write
performance of GFS file system is shown. From this two pictures, it can be
convinced that when the number of clients are not so big, the performance
of two file systems are very similar with each other. Also, from these two
figures, the effect of buffer cache can be seen when the record size grows up.

More experiment results can be seen in the section appendix B.

18

Difference of Read Performance for Record size

3000

Tan| .
mt o e

0,
1000 +
50 -

MB/ sec

4 1024 16384 262144 4194304
KB File

Figure 4.4: Comparison of Read performance for record size 128 KB

iozone pvfs2 node 15 with 2 client 2 server
Write performance

'=900000-1000000
'm800000-900000
0700000800000
600000700000
@500000-600000
m400000-500000
0300000-400000
01200000-300000
m100000-200000
@0-100000

kB/sec

Figure 4.5: Write performance for PVFS2 file system with 2 clients 2 and
servers

19

iozone gfs node 15 with 2 client 2 server Write
performance

kB / sec

kB file

Figure 4.6: Write performance for GFS file system with 2 clients 2 and
servers

20

Chapter 5

Future work and conclusions

In this chapter, a overview of what we have done in this project will be
supplied, together with the find outs from this project. After a short con-
clusion for every file system, a recommendation will be offered according to
the cases in SARA and a outlook for the future of parallel file system.

5.1 Project Conclusions

In this project, two file systems have been studied and tested. One is PVFS2
(Parallel Virtual File System 2), the other is GFS (Global File System) from
Red Hat, Inc. Both of them can be a good choice for a parallel file system.
They can offer a uniform and efficient interface for the users or clients to
access the data store on the shared disk in the systems. Although there are
many similar algorithms or spirits within these systems, there is still some
difference which made them to be utilized in alternative environment.

5.1.1 PVFS2

PVFS2 file system has been developed for many years, since last century
year 90’s. This version of PVFS file system generate a more flexible shared
file system, from the viewpoints of both users and administrators. Data
can be located in many different ways. Internal modules are easier for
developers to upgrade and improve. Management of such a file system can
be executed in a simple and efficient way. Installation and configuration is
also very straightforward.

But, on the other hand, there is also some shortage in PVFS2. When

21

the shared file system become bigger and bigger, the task of adding new
servers to the system would be more difficult. The administrator of the
system will need to generate a new configuration file for every server so that
they can know each other and communicate with each other. Also, when a
server crashes or down for some unforeseeable reason, the system must let
the users wait until this server can work normally again.

5.1.2 GFS

GFS is a good choice in many environments. GFS supplies dynamic
extendable shared file storage for all the clients. With the fencing domain
function, the system can still maintain a health state, once the most nodes
in the system are still running. Also, GFS makes it very easy to add new
storage into the system. A new storage server just needs to join the domain
and export its disk to others. Also, the disk in the GFS can be utilized in a
more efficient manner with the support of cluster logical volume manager.
The logical volume can be dynamic extended or reduced, according to the
needs of user. Also, GFS can be used in multiple manners with various
combination of storage device and network infrastructure.

But, every coin has two sides. GFS has also some weak points. The
installation and configuration for such a system needs more knowledge about
cluster domain and cluster configuration tools. When a new storage server is
added to the system, the cluster logical volume manager needs to be started
again to find out the added volume. Also the volume must be imported by
every client and servers. For a big cluster, this would be a problem.

5.2 Future work

After comparing in this project, for the project officer from SARA, the
file system PVFS2 is selected to be the one which is more proper for
them. Without caching maintain algorithm and locking-module, PVFS2
can support multiple clients accessing the file storage in a parallel manner.
There can be more flexibility for the users to choose their shared disks.

This system can be very proper for a large cluster when many servers
and clients exists The client is very easy to join the cluster or leave the
cluster, not like in GFS where if a client want to leave the domain, firstly
stop all the IO to the shared disks and then stop the various daemons. And
when the client tries to use the system again, a long time must be wasted on

22

import all the remote volumes again. What’s more, PVFS2 is also simpler
for installation and configuration.

23

Appendix A

Installation of PVFS2 and
GF'S file system on the local
server

In this chapter, the installation steps for PVFS2 and GF'S file systems on
the four test nodes are introduced. It should the same procedure when more
nodes need to use PVFS2 and GFS system.

A.1 Installation Steps of PVFS2

The installation of PVFS2 can be carried out in the following manner:

1. Download the PVFS2 package from
http://www.pufs.org/pufs2/download.html .

2. You change to the directory where you have saved the downloaded
PVFS2 package and untar the package to a directory , and then change
to that directory.

3. Run the command:
./configure
, then
make

and

24

make install

. Generate the server configuration file with command

pvis2-genconf /etc/pvis2-fs.conf /etc/pvis2-server.conf

. Then copy the file system general configuration file and the server
specific configuration file to each server in the cluster.

. Run the command:

pvis2-server /etc/pvis2-fs.conf
/etc/pvEs2-server.conf-<hostname> -f

This command will generate the data storage for the PVFS2 file
system on this server.

. Run the command:

pvis2-server /etc/pvis2-fs.conf
/etc/pvis2-server.conf-<hostname>

. This command will really start the server on this node.

. On every client, generate a file called
pvis2tab
”

in directory

/etc/

. Edit this file and add one line for every server like this:

tcp://<server-host-name>:3334/pvfs2-fs<space>/mnt/pvfs2
pvis2 default, noauto 0 O

25

10.

11.

12.

13.

14.

15.

Further, on the clients, make a directory for PVFS2 system with com-
mand:

mkdir /mnt/pvfs2

To generate the PVFS2 module, first run the configuration command
in the untarred directory again with option

--with-kernel=<kernel-source-location>

Then, type the command:
make kmod

, and then

make kmod_install

, till this point, the kernel module is generated.

Next, add the kernel module with command:
insmod /<source-directory-pvfs2>/src/kernel/linux-2.6/pvfs2.ko
Start the PVFS2 client:

pvis2-client

Mount the file system on a mount point:

mount -t pvfs2 tcp://testhost:3334/pvfs2-fs /mnt/pvfs2

26

A.2 Installation Steps of GFS

The installation of GF'S can be carried out in the following manner:

1. Download and install all the package needed for GFS with command:
apt-get install <package-name>
in the next order:

cman-kernel > dlm-kernel > gnbd-kernel > gfs-kernel > magma >
iddev > ccs > cman > dlm > gnbd > gfs > fence > gulm > magma-plugins >rgmanage

2. add the next module to the kernel:

lock_harness, dm-mod, gfs, cman,
lock_dlm, dlm

with the next command

modprobe <module-name>

3. Make sure that the above tasks are done on every node which will be
included in to the GFS system. Then run the next command on every
node:

ccsd

start cluster configuration daemon. For this daemon, a configuration
file called “

cluster.conf
b

need to be generated in the directory

/etc/

27

10.

11.

. The contents for this file can be found in the man manual or internet.

. Then on every node, run:

cman_tool join -w

to form the domain.

Then on every node, run:
fence_tool join -w

to generate a fence domain and start fence daemon.

Then on every node, run:

clvmd

On the servers, generate the physical volume with command:
pvcreate <disk-name-in-/dev>

Start the GNBD (Global Network Block Device) server:
gnbd_serv

Export the physical volume generated with command

gnbd_export -d <physical-volume-device>
-e <volume-name>

Add the GNBD module to the kernel through running:

modprobe gnbd

Import the physical volume from other nodes by: run

28

12.

13.

14.

15.

16.

17.

18.

gnbd_import -i <node-name>
Run the command:
pvscan

on all the nodes

Generate the volume group by running:

vgcreate
<volume-group-name> <phycial-device-local-or-remote> ...

Run the command:
vgchange -aly

on all the nodes.

Create the logical volume on the volume group generated in the last
step by running:

lvcreate -L <size-of-logical-volume> --stripes <number-of-stripes>
-n <name-of-logical-volume> <volume-group—name>

Run the command:
vgchange -aly

on all the nodes again.

Run the command:
lvscan
to find out the logical volume on all the node.

Make the GFS file system on the generated logical volume by running:

29

gfs_mkfs -p
<local_protocal> -t <cluster-name-in-configuration-file>:<file-system—name>
-j <number of journal> /dev/<volume-group-name>/<logical-volume-name>

19. Mount the file system on a point user chooses:

mount -t
gfs /dev/<volume-group-name>/<logical-volume-name> <mount-point>

Till this point the GFS file system is installed on a client successfully.

30

Appendix B

Experiment result
presentation

In this chapter some more experiment results are shown.

31

MB/ sec

Figure B.1: Comparison of Read performance for record size 128 KB

MB/ sec

Figure B.2: Comparison of Write performance for record size 128 KB

Difference of Read Performance for Record size

3000

200
2000 +
1500 +
1000 +
50

B]

0
b4

T

L'«H n
16384 262144 4194304
KB File

—=-local
3 servers

Difference of Write Performance for Record size

1200

T}
o |
i |
!
|

]

0
b4

T

T pad dsa
KB File

32

—=-local
3 servers

Difference of Read Performance for Record size

3000

Tan| .
mt o e

0,
1000 +
50 -

MB/ sec

4 1024 16384 262144 4194304
KB File

Figure B.3: Comparison of Read performance for record size 128 KB

iozone pvfs2 node 15 with 2 client 2 server
Write performance

'=900000-1000000
'm800000-900000
0700000800000
600000700000
@500000-600000
m400000-500000
0300000-400000
01200000-300000
m100000-200000
@0-100000

kB/sec

Figure B.4: Write performance for PVFS2 file system with 2 clients 2 and
servers

33

iozone gfs node 15 with 2 client 2 server Write
performance

kB file

Figure B.5: Write performance for GFS file system with 2 clients 2 and
servers

34

GFS node 12 1 client 3 servers Write performance

[{700-800
m600-700
[@500-600
W400-500
[01300-400
00200-300
E100-200
@0-100

o"i\\\\\

LT

KB File

Figure B.6: Write performance for GFS file system with 1 clients 3 and
servers

35

GFS node 12 1 client 3 servers Read performance

7
" E2500-3000
/B,

i B2500-2000

"'l"i!‘," \‘ll [J1000-1500

[L Bosto
(=L

MB/sec

%

O —

Figure B.7: Read performance for GFS file system with 1 clients 3 and
servers

Difference of Write Performance for Record size

r \ / 3
ol \/ \ r

\ / ~

0 | Y

0 |

100 | -
0

M MM 1 KM 4o
KB Flle

MB/ sec

Figure B.8: Comparison of Write performance for record size 128 KB

36

Bibliography

Parallel Virtual File System, Version 2, PVFS2 Development Team, Sep-
tember 2003

A Quick Start Guide to PVFS2, PVFS2 Development Team, Last Up-
dated: July 2005

Red Hat GFS 6.1 Administrator’s Guide, Redhat,Inc, 2005
How to build the GF'S software from scratch

William D. Norcott, Don Capps: Iozone Filesystem Benchmark,
http://www.iozone.org.

Abhinay Ramesh Kampasi: Design of a Cluster Logical Volume Man-
ager, Pune Institute of Computer Technology, University of Pune.
http: //abhinaykampasi.tripod.com.

37

http://www.pvfs.org/pvfs2/pvfs2-guide.html/
http://www.pvfs.org/pvfs2/pvfs2-quickstart.html/
http://subtrac.sara.nl/trac/beowulf/wiki/WikiGFS
http://www.iozone.org
http://abhinaykampasi.tripod.com

	Background information on Parallel File System
	PVFS2 File System
	Introduction of PVFS2 File System
	Features of PVFS2 File System
	Deployment of PVFS2 File system

	GFS File System
	Introduction of GFS File System
	Deployment of GFS File system

	Comparison between PVFS2 and GFS
	Work Theory
	Test of Performance
	Test Conditions
	Test Sets
	Test Program
	Test Results

	Future work and conclusions
	Project Conclusions
	PVFS2
	GFS

	Future work

	Installation of PVFS2 and GFS file system on the local server
	Installation Steps of PVFS2
	Installation Steps of GFS

	Experiment result presentation

