SSL Accelerating Test Bench
SSL accelerating Test Method

Stefan Deelen & Maurits van der Schee (master students SNE at the UvA)
Supervised by: Jan Meijer (Surfnet)
Contents

• Objectives
• Test Method
• Scope
• Types of testing
• Other tests
• Conclusions & Future Work
• Questions
Objectives

Finding a test method which answers these questions:

1) What is the actual added value of an accelerator to a web server?

2) How to compare accelerator performance?
Our successful test approach:

Comparative testing

Performance with accelerator X vs. performance with accelerator Y

Web server performance with accelerator vs. without accelerator

SSL performance metric = Max. number of unique SSL handshakes per second (TPS)
Three clients running Linux
- Ab, Httperf and autobench software
- Connected through switched gigabit

Dual Xeon 3.8 Ghz server
- FreeBSD 6.2-RELEASE
- Apache/2.2.4 (FreeBSD)
- OpenSSL 0.9.7e-p1
- Broadcom 5820 PCI crypto accelerator
SSL in-balance: How many clients?

<table>
<thead>
<tr>
<th>SSL Messages</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Client</td>
<td>Server</td>
</tr>
<tr>
<td>1. Client hello</td>
<td>2. Server hello</td>
</tr>
<tr>
<td>4. Certificate request* optional</td>
<td>5. Server key exchange* optional</td>
</tr>
<tr>
<td>6. Server hello done</td>
<td></td>
</tr>
<tr>
<td>7. Certificate* optional</td>
<td></td>
</tr>
<tr>
<td>8. Client key exchange</td>
<td></td>
</tr>
<tr>
<td>9. Certificate verify* optional</td>
<td></td>
</tr>
<tr>
<td>10. Change cipher spec</td>
<td></td>
</tr>
<tr>
<td>11. Finished</td>
<td></td>
</tr>
<tr>
<td>12. Change cipher spec</td>
<td></td>
</tr>
<tr>
<td>13. Finished</td>
<td></td>
</tr>
<tr>
<td>14. Encrypted data</td>
<td></td>
</tr>
<tr>
<td>15. Close messages</td>
<td></td>
</tr>
</tbody>
</table>
Tested with 3 clients

- CPU
- BCM5820

Actual request rate vs. Demanded request rate graph.
Tested with 3 clients

Actual request rate vs Demanded request rate

- CPU
- BCM5820

At a Demanded request rate of 33, the Actual request rate for CPU is 33.9.
Test Operation

1. Use Autobench to do a quick test to find the saturation point
2. “Zoom into” the saturation point for more accurate results.
3. Add or remove clients to verify you hit a server limit
Research Scope

- Open source operating system
- OpenSSL
- SSL handshake (RSA cipher)
- Apache 2.2
- Benchmark tools “Autobench and Httpperf”
Types of testing

• Black box
 – Testing focused on software’s external attributes and behavior.
 – From a user’s point of view.

• White box
 – Testing with full knowledge of the algorithms, internal states, architectures, etc.
 – From a developers point of view.
Gray box testing

• “Tests designed based on the knowledge of algorithms, internal states, architectures, or other high level descriptions of program behavior”. – Doug Hoffman
• Needed because black and white box testing do not allow for balanced testing
• Integral to the effective testing of Web applications
Other testing

2. OpenSSL speed benchmark
 • Test the performance of the crypto library used by Apache

3. Single session
 • Test the response time of a single request
OpenSSL speed results

[root@test ~]# openssl speed rsa1024
Doing 1024 bit private rsa's for 10s: 2989 1024 bit private RSA's in 9.97s
Doing 1024 bit public rsa's for 10s: 48265 1024 bit public RSA's in 9.99s

timing function used: getrusage
rsa 1024 bits:
 sign verify sign/s verify/s
 0.0033s 0.0002s 299.8 4832.8
Algorithm

- Accelerators may be optimized for certain algorithms and block sizes
- Algorithm balance can influence performance
 - RSA vs DSA balance
 - Rebalanced RSA
- Driver may not be implemented optimal
 - CRT parameters used or not
AES 256 CBC with different block sizes

Block size:
- 16: -0.30%
- 64: -1.09%
- 256: -0.76%
- 1024: +2.69%
- 8192: -3.33%

Y-axis: blocks
X-axis: block size
OpenSSL performance of different operating systems on the same hardware (relative to FreeBSD 6.0)

source: http://os.t1.cz
OpenSSL speed conclusions

• Results show the actual encrypting performance of a system.
• Results may be heavily influenced by algorithm, driver and operating system
• Results are easy to compare
• But, you are not measuring the “added value” of the accelerator (it is white box)
Single session

- Httpperf results are equal to Ab (Apache bench) results
- We measured a 2 ms difference between the situation with and without accelerator
- The handshake takes 7 ms longer (calculated value)
- We are not able to explain the difference
Httpperf testing

- We used a 0 byte file to focus on handshake
- We used HTTP 1.0 to avoid keep-alive (and thus connection limits)
- We disabled caching on the client and server side (to simulate connections from different hosts)
- We measured the actual request rate (number of HTTP GET requests per second)
Autobench

• …is a Perl script (OS indepent)
• …automates doing series of Httperf tests
• …has a client/server architecture
• …enables you to do distributed tests
• …produces its results in a graph
Conclusions

• We developed a method that enables easy and comparable tests for SSL accelerators
• Gray box testing is needed to find the actual added value of an accelerator
• Choices in algorithm, operating system and drivers may multiply (!) performance
• Future work may prove this method useful for a wider scope
Future work

- Throughput testing
- Virtual users: script that emulates site visit
- Automated searching for saturation point
- Other (maybe better) testing software
- High performance accelerators and/or other algorithms may require an easy scalable client pool
Questions …?