Reliable network booting of cluster computers

Matthew Steggink

July 2nd, 2008
Matthew Steggink

Reliable network booting of cluster computers
Network booting

- Booting off the network instead of local disk
Network booting

- Booting off the network instead of local disk
- Easily deploy new computers;
Network booting

- Booting off the network instead of local disk
- Easily deploy new computers;
- Centralized image management;
Network booting

- Booting off the network instead of local disk
- Easily deploy new computers;
- Centralized image management;
- Possibility of diskless computers;
Network booting

- Booting off the network instead of local disk
- Easily deploy new computers;
- Centralized image management;
- Possibility of diskless computers;
- Involves DHCP, ARP and TFTP
- Currently used for network booting: PXELinux
The setup

![Cluster computer setup diagram](image)
When booting a large number of clients, some will not complete the boot process

- An analysis of the failing points;
- Determine the cause of the failing clients;
- Search for a solution;
Testing
Shape the traffic

- Limit the traffic to simulate network characteristics
- Two options to shape the traffic
Outline
- Theory
- Research question
- Test methods
- Observations
- Alternative booting
- Conclusion and future work
- Questions

Shape the traffic

- Limit the traffic to simulate network characteristics
- Two options to shape the traffic
 1. VMWare Teams
 2. Traffic Control in Linux: Token Bucket Filter
Shape the traffic

- Limit the traffic to simulate network characteristics
- Two options to shape the traffic
 1. VMWare Teams
 2. Traffic Control in Linux: Token Bucket Filter
- Limit traffic and set the rates lower to find a failing point
Observations - Traffic control

- VMware teaming does not shape accurately
- TC shapes more reliable
Observations - Fail point

- Too much packet loss and not enough bandwidth
Identified problems

- DHCP
 - No DHCP Offers, No boot file
Identified problems

- DHCP
 - No DHCP Offers, No boot file
- ARP
 - ARP Timeout
Identified problems

- DHCP
 - No DHCP Offers, No boot file
- ARP
 - ARP Timeout
- TFTP
 - TFTP Timeout, Read timeout, illegal operation, server does not support tsize
Identified problems

- DHCP
 - No DHCP Offers, No boot file
- ARP
 - ARP Timeout
- TFTP
 - TFTP Timeout, Read timeout, illegal operation, server does not support tsize
- During downloading (TFTP)
 - Loading vmlinux... boot failed
Booting by TCP / HTTP using gPXE

- gPXE is an open source project
- TCP has delivery reliability because of re-transmissions with acknowledgments
- Two deployment methods
Booting by TCP / HTTP using gPXE

- gPXE is an open source project
- TCP has delivery reliability because of re-transmissions with acknowledgments
- Two deployment methods
 1. gPXE flashed into the boot ROM
 2. gPXE used as a second stage loader
gPXE results

- gPXE is easy to use, only a few extra lines of code
- No alterations to the clients are needed
- It was compatible with mainstream boot ROM’s (Tested: Intel, Broadcom, Nvidia)
- Connections are more reliable; no connections have been aborted during testing
- Disadvantage at this point:
 - Introduces a second DHCP transaction
Situations compared

- **Current situation**
 - Power on
 - BIOS → bootROM
 - Download bootfiles TFTP
 - Execute NBP
 - Download vmlinux / initrd
 - DHCP req

- **gPXE 2nd stage**
 - Power on
 - BIOS → Network Boot ROM
 - Download gPXE ROM
 - Download bootfiles HTTP
 - DHCP Req

- **gPXE flashed**
 - Power on
 - BIOS → gPXE bootROM
 - Download bootfiles HTTP
 - DHCP req
Conclusion

- gPXE is ready to deploy with only minor alterations;
- The current setup should not use TFTP;
- Connections are more reliable with gPXE and TCP/HTTP;
- Results:
 - DHCP is still the bottleneck
 - TFTP bottlenecks have been solved
Future work

- Take out the second DHCP session
- There might be a better performing DHCP server
Questions

Matthew Steggink
matthew.steggink@os3.nl

Reliable network booting of cluster computers