Software Defined VPNs

S Konstantaras & G Thessalonikefs

stavros.konstantaras@os3.nl george.thessalonikefs@os3.nl
Background

Software Defined Networking (SDN)

- A modern flexible networking concept separating the control plane from the data plane.
- A single entity governs the SDN topology and applies local policies.
- A standardized open interface (OpenFlow) allowing to combine hardware from different vendors.

Virtual Private Networks

- Logic separation of a physical infrastructure with complete traffic separation.
- Interconnects LANs which are located in different countries/continents.

A type of VPN technology is Virtual Private LAN Service (VPLS) which:

- Allows organizations to interconnect their local Ethernet networks in a scalable way.
Research Questions

The main research question is the following:

- How can VPLS be implemented efficiently by using the OpenFlow 1.3 switch specification interface?

The main research question can be divided into the following sub-questions:

- Can SDN be an underlay layer for building on-demand VPLS services?
- Is SDN flexible enough to support at least a scalable, efficient and effective implementation of VPLS as existing solutions?
Outline

- Involved Technologies
- Design part
- Architecture analysis part
- Optimizations and ideas
- Conclusion
MPLS/VPLS Architecture

CUSTOMER A
SITE 1

VPLS-A

CUSTOMER B
SITE 1

VPLS-B

FIB: Forward Information Base

CUSTOMER B
SITE 2

VPLS-B

CUSTOMER A
SITE 2

VPLS-A

pseudowires (full mesh)

FIB

PE

CUSTOMER A
SITE 1

PE

CUSTOMER B
SITE 2

PE

FIB

FIB

FIB

PE

PROVIDER’S MPLS CORE

PE

CE

PE

CE

CE

CE

CE
MPLS

• Protocol used in the core of networks
• Single domain (ISP)

LSP = Label Switched Path: unidirectional path between LERs

LER = Label Edge Router (or PE = Provider Edge router)
LSR = Label Switching Router (or P = Provider router)
OpenFlow 1.3

- Added support for MPLS
 - MPLS Label matching (ability to match more than one)
 - MPLS Label manipulation (push/pop/swap)

- Group tables allow multiple actions per flow.
 - e.g. for packet A send to port 10 AND change VLAN_ID and send to port 3.
SDN/VPLS vs MPLS/VPLS

- Common OpenFlow switches replace PEs.

- No full mesh required.

- No pseudowires
 - No Signaling
 - No Label exchange

- Centralized Controller in commodity server with:
 - Network topology knowledge
 - FIB
Architecture requirements

Each host can choose to participate in **any** VPN

Host needs to label its own traffic

VLAN tagging

Each host can participate in **many** VPNs simultaneously

Unique information is required

Combination of MAC + VLAN

Scalable and Multi Domain

Avoid limitations of VLAN tagging

MPLS labeling
VPN representation

- Each VPN is represented by a **VPLS_ID** (MPLS label).

- Hosts define VPNs by VLAN (they are MPLS agnostic).

- Therefore, 4K VPNs can be represented in an island and 1M can be represented globally.
 - A mapping is required between local VLAN ID and global VPLS ID per island.
Inside an island, a **HOST** is defined as a unique combination of **MAC address** + VLAN

Inside provider’s domain, a **HOST** is defined as a unique combination of **MAC address** + **VPLS_ID**

A **BROADCAST_MAC** is defined as a MAC address that is either the well-known Ethernet broadcast address or one of the easily recognizable Ethernet multicast addresses.

VPLS_ID which is global and unique by representing VPN instances that can run simultaneously in the complete network.

ISLAND_ID which is global and unique by representing the islands that participate in the complete network.
Architecture entities

- **DE**: Domain Edge device
- **D**: Domain device
- **DBE**: Domain Border Edge device
- **IE**: Island Edge device
2 Different solutions

Core Labeling
- Islands are MPLS agnostic
- Uses 2 MPLS tags
 - Destination information
 - VPN information
- MAC Tables on both domain and island controllers

Island Labeling
- Core is MAC agnostic
- Uses 1 MPLS tag
 - Destination information (Unicast)
 - VPN information (Broadcast)
- All information is known to each island
Core Labeling - Unicast

1: Host sends packet with VLAN_ID
2: IE forwards packet to Domain
3: Controller calculates shortest path to destination DBE and install flows
4: DE pushes ISLAND_ID + VPLS_ID
5: DBE forwards packet to other domain
6: Controller calculates shortest path to destination DE and install flows
7: DE pops MPLS tags and changes VLAN_ID
8: Host receives packet
Island Labeling - Unicast

1: Host sends packet with VLAN_ID
2: IE changes VLAN_ID, pushes ISLAND_ID and forwards to Domain
3: Controller calculates shortest path to destination DBE and install flows
4: DE forwards packets by ISLAND_ID

5: DBE forwards packet to other domain
6: Controller calculates shortest path to destination DE and install flows
7: DE pops MPLS tag and forwards to island
8: Host receives packet
Broadcast considerations

- Broadcast traffic can not be blindly flooded to all ports
 - Traffic isolation is ignored and privacy is violated!
 - Preconfiguration based on (PORT,VLAN) required
 - Split Horizon needed to avoid broadcast loops.

- Broadcast traffic must be as minimum as possible at core
 - Multicast trees are needed to forward traffic only to corresponding islands.
Core Labeling - Broadcast

1: Host sends packet with VLAN_ID
2: IE forwards packet to VPN ports
3: Controller creates multicast tree to VPN destination islands and install flows
4: DE pushes BRCAST_TAG + VPLS_ID
5: DBE forwards packet to other domain
6: Controller creates multicast tree to VPN destination islands and install flows
7: DE pops MPLS tags and changes VLAN_ID
8: Host receives packet
Island Labeling - Broadcast

1: Host sends packet with VLAN_ID
2: IE forwards packet to VPN host ports, AND pushes VPLS_ID + send to domain
3: Controller creates multicast tree to VPN destination islands and install flows
4: DE forwards packets by VPLS_ID
5: DBE forwards packet to other domain
6: Controller creates multicast tree to VPN destination islands and install flows
7: IE pops MPLS tag and changes VLAN_ID
8: Host receives packet
MAC Learning

- Based on OpenFlow Packet In events in order to combine (source) MAC addresses with PORT + VLAN

- Nevertheless, the ‘Unknown unicast’ problem exists:
 “Response traffic from unknown hosts may match existing flows and the MAC learning mechanism is skipped.”

Solution

“Skip global flooding and introduce a new host discovery mechanism”*

(Based on ForceMacLearning mechanism)
Solving Unknown Unicast
Solving Unknown Unicast
Solving Unknown Unicast

CTRL installs filter flow & floods packet to the VPN ports
Solving Unknown Unicast - ForceMacLearning
Solving Unknown Unicast - ForceMacLearning

Domain Controller

CTRL sends host information to other islands or domains

MAC_C and relevant host information

MAC_C and relevant host information

DE

D

IE

Host A

Host B

Host C

Host D

IE

IE

Island Controller

Island Controller
Solving Unknown Unicast - ForceMacLearning

CTRL learns the location of host C

Domain Controller

DE

DE

D

Island Controller

Host A

Host B

IE

Host C

Host D

IE

Island Controller
Architecture analysis – Scalability (1/2)

Core labeling

- Able to support up to 1 048 575 islands in total.
- Requires two MPLS labels to operate

Customer Island

- Up to 4096 VPNs running simultaneously
- Unicast Flows at the OF Switch increase linearly by the number of hosts
- Broadcast Flows at the OF Switch increase by the combination of IN_PORT+VLAN ID

Provider’s Domain

- Up to 1 048 575 VPNs running simultaneously. All islands can participate in any 4096 VPNs
- Unicast Flows at the DE switches increase linearly by the number of hosts
- Broadcast Flows at the OF Switches increase by the combination of VPLS_ID + INPORT
Architecture analysis – Scalability (2/2)

Island labeling

- Able to support up to 1,048,575 islands in total.
- Requires one MPLS label to operate

Customer Island

- Up to 4,096 VPNs running simultaneously
- Unicast Flows at the OF Switch increase linearly by the number of hosts
- Broadcast Flows at the OF Switch increase by the combination of IN_PORT+VLAN ID

Provider’s Domain

- Up to 1,048,575 VPNs running simultaneously. All islands can participate in any 4,096 VPNs
- Unicast Flows at the OF Switches increase linearly by the number of islands
- Broadcast Flows at the OF Switches increase by the combination of VPLS_ID + INPORT
Optimizations/Ideas – M-Domain Discovery

Based on LLDP type 127

Introduce 3 sub-fields: Controller IP, Level and Domain ID
Optimizations/Ideas – Aggregation at core (Unicast Multi Domain traffic)

New MPLS tag

- Introduce Domain ID (20 bits) and let each provider choose its own unique identifier.
- Insert the Domain ID as an additional MPLS label at every packet needing to exit Provider’s domain.
- Install flows at the core pointing to other provider domains. It will aggregate all the traffic from any VPN/Island.

Splitting MPLS TAG

- Introduce Domain ID (8 bits) and let each provider choose its own island identifiers.
- Separate the MPLS Label at Domain and Island Part:
 150 40 = LABEL
 10010110 000000101000 = 614440
- MAX 256 Domains and 4096 islands per Domain.
- Flows matching one MPLS label.
Discussion

Positives
- Efficient and flexible on demand VPLS services able to interconnect millions of hosts in thousands of customer sites.
- Scalable and easily extendable architecture which is able to work in a Multi Domain environment.
- Network programmability allows automation and design freedom.
- Architecture can be implemented in the near future based on OpenFlow 1.3

Negatives
- A Controller-to-Controller communication channel needs to be defined
- A modified OpenFlow Controller needs to be implemented covering the requirements of our architecture
- Scalability ends where combined protocols stop scale (e.g. MPLS Label, VLAN ID).
Conclusion

• SDN technology provides the flexibility to design a complete network architecture for VPLS.

• Capabilities of OpenFlow expand through different combinations with other protocols.

• Network designers can build an abstract underlay SDN network and deploy multiple services on top of it.
Future work

• Extend architecture to handle Multicast traffic (possible at layer 2 via RFC 1112).

• Extend Architecture for QoS Considerations (based on OF 1.3 Meter table)

• Implementation of the architecture to verify that SDN is a flexible, production ready technology.

• Practical Performance evaluation (based on OF 1.3)
Thank you

Software Defined VPNs