Formal verification of the implementation of the MQTT protocol in IoT devices

Kristiyan Mladenov

University of Amsterdam
Faculty of Physics, Mathematics and Informatics
MSc System and Network Engineering
Research Project 2

July 3, 2017
Introduction

- Mirai botnet producing one of the largest DDoS attacks ever.
- We can also talk about botnet "wars".
- Compromise due to human error.
IoT testing

- Rapid7 IoT Security Testing Methodology
- OWASP IoT Top 10
- IoT Inspector (SEC Technologies)
IoT testing

- Rapid7 IoT Security Testing Methodology
- OWASP IoT Top 10
- IoT Inspector (SEC Technologies)

What would happen if we dig deeper?

- One of the main goals of the IoT devices is to exchange data using some message exchange mechanism.
- How can we assure a proper protocol implementation?
- Could we make sure that it is correct in a more formal way?
Protocol of choice

MQTT
Message Queue Telemetry Transport

• Designed for message transfer with small code footprint and limited bandwidth in mind.

• First version was available in 1999. Version 3.1.1 is standardised by OASIS (2014) and ISO (2016).
Protocol of choice

MQTT

Message Queue Telemetry Transport

- Designed for message transfer with small code footprint and limited bandwidth in mind.
- First version was available in 1999. Version 3.1.1 is standardised by OASIS (2014) and ISO (2016).
- Publish/Subscribe communication mechanism similar to IRC.
- Adds the concept of Last Will and QoS.
MQTT use cases

MQTT is implemented in:

- The backend of The Things Network (LoRa)
- AWS IoT, Google Cloud IoT
MQTT use cases

MQTT is implemented in:

- The backend of The Things Network (LoRa)
- AWS IoT, Google Cloud IoT

Applications that use MQTT

- Fitness trackers, Medical equipment, ATM machines
- Implemented by Deutsche Bahn (DB)
- Facebook Messenger (Unconfirmed)
Research Question

Can the MQTT protocol implementation in IoT devices be verified formally?

Subquestions

- What methods can be used to formally assess the implementation of a communication protocol?
- Using the chosen formal testing methods, does the MQTT implementation in certain selected IoT devices adhere to the standard?
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework.
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework. Not open

- Testing and Test Control Notation version 3 (TTCN-3) included in part 3 of the above. Formal Description Technique as of ITU-T Z.160 - Z.179
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework. Not open

- Testing and Test Control Notation version 3 (TTCN-3) included in part 3 of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:

...
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework. Not open

- Testing and Test Control Notation version 3 (TTCN-3) included in part 3 of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:

- Mapping TTCN to Labelled Transition Systems.
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework. Not open
- Testing and Test Control Notation version 3 (TTCN-3) included in part 3 of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:

- Mapping TTCN to Labelled Transition Systems.
- Finite State Machines and TTCN successfully used to verify IIoT protocol implementations.
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework. Not open
- Testing and Test Control Notation version 3 (TTCN-3) included in part 3 of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:

- Mapping TTCN to Labelled Transition Systems.
- Finite State Machines and TTCN successfully used to verify IIoT protocol implementations.

There is a tool for every approach
Related Work

From some of the major standardisation organisations:

- ISO/IEC 9646 - Conformance testing methodology and framework. Not open
- Testing and Test Control Notation version 3 (TTCN-3) included in part 3 of the above. Formal Description Technique as of ITU-T Z.160 - Z.179

Relevant scientific research:

- Mapping TTCN to Labelled Transition Systems.
- Finite State Machines and TTCN successfully used to verify IIoT protocol implementations.

There is a tool for every approach

- The testing to follow is focused on Eclipse Titan.
MQTT Packet Structure

Figure: MQTT Packet structure

![MQTT Packet Structure Diagram](image-url)
Example test

[MQTT-2.3.1-1]

SUBSCRIBE, UNSUBSCRIBE, and PUBLISH (in cases where QoS > 0) Control Packets MUST contain a non-zero 16-bit Packet Identifier.

Figure: Publish with Packet ID 0

Figure: Test execution flowgraph
Room for improvement

Writing is nature’s way of letting you know how sloppy your thinking is.1

1Dick Guidon
Room for improvement

Writing is nature’s way of letting you know how sloppy your thinking is.

- Translating a specification from natural to formal language is prone to errors.
- How can we safely come up with new values for the tests?
- If the specification is defined in a formal language, testing might be easier.

1Dick Guidon
Intermezzo

The Die Hard challenge

- You have two buckets
 - 3 litres
 - 5 litres
- You have an infinite amount of water.
- You can waste as much water as you want.
- How do you fill the large bucket with exactly 4 litres?

Intermezzo approach (enter TLA+)
EXTENDS Integers

VARIABLES small, big

TypeOK $\triangleq \land \text{small} \in 0 \ldots 3$
$\land \text{big} \in 0 \ldots 5$

Init $\triangleq \land \text{big} = 0$
$\land \text{small} = 0$

FillSmall $\triangleq \land \text{small}' = 3$
$\land \text{big}' = \text{big}$

FillBig $\triangleq \land \text{big}' = 5$
$\land \text{small}' = \text{small}$

EmptySmall $\triangleq \land \text{small}' = 0$
$\land \text{big}' = \text{big}$

EmptyBig $\triangleq \land \text{big}' = 0$
$\land \text{small}' = \text{small}$

SmallToBig \triangleq IF $\text{big} + \text{small} \leq 5$
THEN $\land \text{big}' = \text{big} + \text{small}$
$\land \text{small}' = 0$
ELSE $\land \text{big}' = 5$
$\land \text{small}' = \text{small} - (5 - \text{big})$

BigToSmall \triangleq IF $\text{big} + \text{small} \leq 3$
THEN $\land \text{big}' = 0$
$\land \text{small}' = \text{big} + \text{small}$
ELSE $\land \text{big}' = \text{small} - (3 - \text{big})$
$\land \text{small}' = 3$

Next $\triangleq \lor \text{FillSmall}$
$\lor \text{FillBig}$
$\lor \text{EmptySmall}$
$\lor \text{EmptyBig}$
$\lor \text{SmallToBig}$
$\lor \text{BigToSmall}$
• Define different invariant in the TLA+ model checker.

• Observe the behaviour of the model; relax constraints if necessary.

• Map the observed behaviour in terms of TTCN-3 tests.

• The problem of translating natural to formal language is still not solved.

Figure: TLA+ simplified keepalive
What follows is a list of the normative requirements and how do the tested implementations conform to them.

<table>
<thead>
<tr>
<th>Normative Requirements</th>
<th>2.2.2</th>
<th>2.3.1-1</th>
<th>3.1.0-1a</th>
<th>3.1.0-1b</th>
<th>3.1.0-2</th>
<th>3.1.2-2</th>
<th>3.1.2-24</th>
<th>3.1.3-8</th>
<th>3.3.1-4</th>
<th>3.6.1-1</th>
<th>3.8.1-1</th>
<th>3.8.3-4</th>
<th>3.12.4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquitto</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
</tr>
<tr>
<td>Emqtt</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RabbitMQ</td>
<td>x</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>x</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
What follows is a list of the normative requirements and how do the tested implementations conform to them.

<table>
<thead>
<tr>
<th></th>
<th>2.2.2</th>
<th>2.3.1-1</th>
<th>3.1.0-1a</th>
<th>3.1.0-1b</th>
<th>3.1.0-2</th>
<th>3.1.2-2</th>
<th>3.1.2-24</th>
<th>3.1.3-8</th>
<th>3.3.1-4</th>
<th>3.6.1-1</th>
<th>3.8.1-1</th>
<th>3.8.3-4</th>
<th>3.12.4-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mosquitto</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
</tr>
<tr>
<td>Emqt</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>RabbitMQ</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Conclusion

- There are plenty of ways to model the implementation of a communication protocol, using Finite State Machines, Labelled Transition Systems, even Set Theory and First Order Logic.

- Using the TTCN-3 language, three different MQTT implementations were tested and inconsistencies with the specification were found.

As a side note, adhering to the standard does not mean that a device is secure, especially in the cases of bad protocol design.
Conclusion

- There are plenty of ways to model the implementation of a communication protocol, using Finite State Machines, Labelled Transition Systems, even Set Theory and First Order Logic.

- Using the TTCN-3 language, three different MQTT implementations were tested and inconsistencies with the specification were found.

As a side note, adhering to the standard does not mean that a device is secure, especially in the cases of bad protocol design.
Conclusion

• There are plenty of ways to model the implementation of a communication protocol, using Finite State Machines, Labelled Transition Systems, even Set Theory and First Order Logic.

• Using the TTCN-3 language, three different MQTT implementations were tested and inconsistencies with the specification were found.

• Those inconsistencies can be used to fingerprint and identify implementations.
Conclusion

- There are plenty of ways to model the implementation of a communication protocol, using Finite State Machines, Labelled Transition Systems, even Set Theory and First Order Logic.
- Using the TTCN-3 language, three different MQTT implementations were tested and inconsistencies with the specification were found.
- Those inconsistencies can be used to fingerprint and identify implementations.

As a side note, adhering to the standard does not mean that a device is secure, especially in the cases of bad protocol design.
Future work

- Building a complete TLA+ model could be able to identify additional behavioural differences between different implementations.
- The output derived from the TLA+ model might be used for fuzzing.
- It could also help in identifying deficiencies in the protocol design itself, rendering all implementations vulnerable.
Questions?

Share your thoughts?
References

- Image depicting the interaction between the MQTT Client and Server taken from: http://www.hivemq.com/blog/mqtt-essentials-part2-publish-subscribe