A hybrid system for automatic exchanges of routing information

Stamatios Maritsas

University of Amsterdam
Informatics Institute
Master of Science in System and Network Engineering

supervised by

Stavros Konstantaras
s.konstantaras@uva.nl

George Thessalonikefs
george@nlnetlabs.nl

November 23, 2016
Definition

BGP is the **de facto** inter-AS\(^1\) routing protocol used on the Internet nowadays.

- Specified in RFC 4271 (BGP4)
- Peer-to-peer reachability discovery protocol
- Comes in two flavors, \(iBGP\) and \(eBGP\)

\(^1\)Autonomous System (AS) = a connected group of IP prefixes having a single, consistent routing policy
Policies

Definition
Policies determine a set of rules on how routing and reachability information is exchanged between BGP routers.

- whom does an AS connect with
- which route prefixes are announced to others
- which route prefixes are accepted from others
- what are the desired preferences, etc.

Categorization
- Transit policies
- Traffic engineering policies
- Scalability policies
- Security-related policies
Routing Policy Specification Language — RPSL

Definition

RPSL is a neutral-vendor, object-oriented language used to specify a routing policy in the IRR.

- defines 13 classes of objects
- `aut-num`, `route`, `as-set`, `route-set`

- Three-fold purpose
 - presentation of policies in IRR in an understandable format
 - description of policies in a more comfortable/solid way
 - can be converted into BGP configuration files

- Practical difficulties
 - complex policy descriptions due to its flexibility
 - level of accuracy of descriptions largely varies
 - adds an extra high-level configuration step
Internet Routing Registry — IRR

Definition

IRR is a distributed set of repositories used by many network operators to store their AS routing policy.

- **Numbers**
 - 26 both public and private routing registries in total
 - 5 Routing Internet Registries (RIRs) — 5 geographical regions
 - AFRINIC, ARIN, APNIC, LACNIC, RIPE NCC
 - Allocation of IP address space and ASNs

- **Security considerations**
 - out-of-date information
 - inconsistencies
 - no proper authorization/authentication
 - RFC 2725 (re-examine its applicability)
BGP security

- Early '90s
 - first standardization of BGP in RFC 1105, NOT security-oriented
 - small number of networks, trust in place
 - no need for security :)

- Nowadays
 - BGP4 (RFC 4271) is still NOT security-oriented
 - huge number of networks, NO trust in place
 - security has become mandatory

- Security solutions
 - many proposals, both crypto-based and non-crypto based
 - crypto-based difficult to be applied (excluding RPKI)
 - require modifications to BGP messages structure
 - high computational cost
 - BGP route filtering (non crypto-based), most effective and widely deployed technique
Current state

Centralization

IRRToolset, BGPq3, rpsltool, etc.

Router

Decentralization

Policy

IRR
Research Questions

Main research question

Is it possible to design a hybrid system to automatically exchange routing policies for BGP configurations?

Sub-research questions

- Which would be the benefits by designing a hybrid approach?
- What is the potential of this hybrid system in terms of scalability and efficiency?
- What security aspects should this hybrid system employ?
Where does our project land?

- Centralization
 - IRRToolset, BGPq3, rpsltool, etc.
 - IRR

- OUR PROPOSAL
 - Router
 - Policy

- Decentralization
Methodology

- Literature study, theoretical knowledge
 - articles
 - RFCs
 - etc.
- Meetings, practical knowledge
 - supervisors
 - a few network operators (mostly of small ISPs)
- Questionnaire, practical knowledge
 - 2 questions concerning BGP update policy
 - 19 network operators mailing lists
 - statistical sample = 55 responses, only an indication :
 - more than one answer to every question
Q1 indicates a need for an automatic way to exchange policies
Q2 indicates a need for an automatic way to exchange policies.

Q2 slightly indicates RPSL’s difficulty to be adopted (17 / 55, 30.9%).
Decision making (1/3)

- **Requirements**
 - Decentralization of policy information
 - Mapping between domains - policy service locations
 - Vendor-neutrality of routing policy language
 - Security (authorization & authentication)
 - Support for *Policy Views* (privacy)

\(^2\)For brevity, *domain* \(\equiv\) *administrative domain* or *AS*
Hybrid system model — Inspired by [1] [UvA+TUDelft, 2015]

- need for both centralization & decentralization
- 3 components
 - Policy Mapper (PM) - centralized part
 - Policy Provider (PP) - distributed part
 - Policy Requester (PR) - distributed part
Security aspects

- PM acts as a Trusted Third Party (TTP) & accessible by both PRs and PPs
- One public/private key-pair per domain, used to create a self-signed certificate and share it with PM
- PRs & PPs communicate using their self-signed certificates over TLS (mutual authentication)
Registration to Policy Mapper

<table>
<thead>
<tr>
<th>R#</th>
<th>Domain ID</th>
<th>Policy Service Location</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASN1</td>
<td>psl.asn1.org:port1</td>
<td>cert1</td>
</tr>
<tr>
<td>2</td>
<td>ASN2</td>
<td>psl.asn2.org:port2</td>
<td>cert2</td>
</tr>
<tr>
<td>3</td>
<td>ASN3</td>
<td>psl.asn3.org:port3</td>
<td>cert3</td>
</tr>
</tbody>
</table>

LEGEND
- **PM**: Policy Mapper
- **Interaction Messages**

1. Connection to RIR
2. Interaction with PM
- Innovative idea
- Discrete piece of main policy information
- Different *policy views* for different requesters
Registration to Policy Provider

<table>
<thead>
<tr>
<th>R#</th>
<th>Domain ID</th>
<th>Policy Service Location</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASN1</td>
<td>psl.asn1.org:port1</td>
<td>cert1</td>
</tr>
<tr>
<td>2</td>
<td>ASN2</td>
<td>psl.asn2.org:port2</td>
<td>cert2</td>
</tr>
<tr>
<td>3</td>
<td>ASN3</td>
<td>psl.asn3.org:port3</td>
<td>cert3</td>
</tr>
</tbody>
</table>

Legend:
- **PM**: Policy Mapper
- **PR**: Policy Requester
- **PP**: Policy Provider
- Interaction Messages (RED: TLS session)
Policy update & notification

![Diagram of policy update and notification process]

Table of RIs and Policy Locations

<table>
<thead>
<tr>
<th>R#</th>
<th>Domain ID</th>
<th>Policy Service Location</th>
<th>Certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASN1</td>
<td>psl.asn1.org:port1</td>
<td>cert1</td>
</tr>
<tr>
<td>2</td>
<td>ASN2</td>
<td>psl.asn2.org:port2</td>
<td>cert2</td>
</tr>
<tr>
<td>3</td>
<td>ASN3</td>
<td>psl.asn3.org:port3</td>
<td>cert3</td>
</tr>
</tbody>
</table>

Legend

- **PM**: Policy Mapper
- **PR**: Policy Requester
- **PP**: Policy Provider
- **Interaction Messages (RED:TLS session)**

Message:

"I just updated my policy!"
Discussion

- **Scalability**
 - hybrid model offers scalability
 - innovative system proposal

- **Implementation ideas**
 - Security
 - RPKI, authorization but NOT authentication (RFC 6480)
 - HTTPS, need for client certificates as well
 - Policy language
 - only RPSL in place
 - need for a structure-based, human-readable language that provides one-to-one correlation between router configurations and policies
Conclusion

- Decentralization of policies is possible! :)
- Simplicity of architecture
- Components simple and well-defined
- Room for extra services and extension of system capabilities
- Contribute to BGP security by supporting the correctness and effectiveness of BGP filters
 - policy views preserve the confidentiality of data
 - ISPs more motivated to keep their policy information accurate and up to date
Further work

- Proof of concept
- Large scale scenario
- RPSL alternatives
 - Routing Documentation Language (RDL)
 - YAML Ain’t Markup Language
- Correctness of policy information
 - Comparison of the policy view received with the local policy

\(^3\)part of Extendible Next Generation Routing Information Toolkit (ENGRIT) project and kicked off on 2014 [2]
References

Ralph Koning, Miroslav Zivkovic, Stavros Konstantaras, Paola Grosso, Cees de Laat (UvA) and Farabi Iqbal (TUDelft) (2015)
Architecture for Exchanging Topology Information in Multi-domain Environments

Per Gregers Bilse and Benno Overeinder, IEPG Meeting, IETF 89, London, UK, March 2014
Presentation: "A programmatic approach to generating router configurations"
Thank you for your attention! :)
Questions?