Reliable Library Identification Using VMI Techniques

Nick de Bruijn
Leandro Velasco

University of Amsterdam
Faculty of Physics, Mathematics and Informatics
MSc System and Network Engineering
Research Project: 1

February 7, 2017

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017

Introduction

® Enhance cloud security
® Vulnerabilities in libraries can have major consequences

e Efficient way of detecting vulnerabilities in libraries is needed

Velasco (UVA) Reliable Library Identification VMI February 7, 2017

Research Question

To which extent can one reliably identify the version of a selected running library
using the VMI techniques provided by LibVMI?

How can one identify a running library in a VM where the library name can not be trusted?

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 3/29

/

Related work virtual machine introspection:

® 2003, A virtual machine introspection based architecture for intrusion detection. In
NDSS, volume 3, pages 191 - 206. Tal Garfinkel, Mendel Rosenblum, et al.

e 2012, Simplifying virtual machine introspection using libVMI. Sandia report, pages
43 - 44. Bryan D Payne.

® 2016, Vmicvs: Cloud vulnerability scanner. Anil Kumar Konasale Krishna and
Robert Ricci.

Related work library identification:

® 2017, Automatic Library Version ldentification, an Exploration of Techniques
Thomas Rinsma.

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 4/29

/

Virtual machines

Hypervisor

Hardware layer (CPU, RAM, etc.)

Figure: Vitual Machine Architecture!

® Hypervisor has access to the binary representation of the virtual memory used by
the OS running inside the virtual machine

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI

Semantic gap (1/2)

char]

Figure: Memory from the hypervisor's perspective?

2C. A. Schneider. Full Virtual Machine State Reconstruction for Security
Applications, 2013

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 6 /29

Semantic gap (2/2)

struct module

state next

list prev

name I

mkobj \——-.. “loop"
modinfo_attrs char[60] = “loop!
version

sre_version .-

holders_dir - struct module_kobject
syms - kobj -l
cres -] ol
num_syms o= drivers_dir P
mp -
ctors

num_ctors

r:mndulefstate = MODULE_STATE LIVE)

-~

N
struct list_head

void (*)() = NULL

unsigned int = 0

Figure: Memory from the guest’s OS perspective3

3C. A. Schneider. Full Virtual Machine State Reconstruction for Security
Applications, 2013
N. de Bruijn, L. Velasco (UVA)

Reliable Library Identification VMI

February 7, 2017

Virtual machine introspection

® Method to interpret/translate the hypervisor's perspective

e Knowledge of the guest’'s OS is needed

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 8 /29

@ A virtual machine introspection library based on XenAccess
(64-bit VM guest support, KVM support, fixes on bugs and memory leaks)

@® Provides a useful application programming interface (API) for reading and writing
to a virtual machines memory

© Access memory using physical addresses, virtual addresses, or kernel symbols

@ Overcomes the semantic gap by providing the lacking information
(OS type, location of symbolic information, offsets used to access data)

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 9 /29

LibVMI (2/3)

@ Request to view kernel
symbol

LibVMI finds the virtual
address for kernel symbol

2]
(3]

Kernel page directory

mapped to find correct

page table

@ Page table mapped to
find correct data page

@ Data page returned to

LibVMI Library

@ LibVMI returns the data
requested

Introspecting VM

T
VMI |
_Application)
'
— ‘\1) (e
| j Y \6)
Vg
. I LibVMI
syeeen “2A J User VM
map UserAddr| |
Kamel Addr|
(Y > 7 a ™
(3) s
@{ Page Directory Page Table
Kemel Data

Figure: LibVMI memory mapping*

*http://libvmi.com/docs/gcode-intro.html

N. de Bruijn, L. Velasco (UVA)

Reliable Library Identification VMI

February 7, 2017 10 / 29

LibVMI (3/3)

Result of LibVMI:

@ Mapped virtual memory view

@ Access to the virtual memory

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI bruary 7, 2017 11/29

Library identification (1/3)

@ Version number extracting

e Extract library version from its name or binary

@® Behaviour based identification

e Look at behaviour of the library (system calls, wrapper functions)

© Fingerprint identification

e Extract information from a binary to create a fingerprint
e Strict vs Fuzzy fingerprints

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 12 /29

Library identification (2/3)

Printable strings:

® Uses a set of printable strings extracted from the library executable
(Error messages, copyright or usage information)

® Tian et al. show that such a list of strings can be an accurate signature of an
executable object when used for malware classification

® Thomas Rinsma concludes this to be the most efficient method to identify libraries
® Printable strings can be extracted by using Unix strings command
® Measure similarity of sample sets using the Jaccard index:

A

|A n B

J(A,B) = AV

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017

Library identification (3/3)

setrpcent

__progname

mbrtoc32
_I0_free_backup_area
creat

setnetent

wcschr

__strxfrm_1
posix_spawn_file_actions_addclose
argp_err_exit_status
getgrgid_r
__vfwprintf_chk
unshare
_seterr_reply
__recv_chk
_I0_getline_info
__fwriting

__finitel
_itoa_lower_digits
inet6_opt_finish
pthread_cond_init
_I0_default_xsputn

Figure: Example of strings obtained with the Unix command strings

Velasco (UVA) Reliable Library Identification VMI

February 7, 2017

14 / 29

Experimental Environment

The environment consist of:

® Privileged Host Dom0, in charge of performing the introspection

® Guest VM, system that will be introspected

Control Domain
(DomO0)
Library Identification Guest VM
Program (DomU)
Toolstack Libc - Libncurses
Xen Hypervisor
Host Hardware

. Velasco (UVA) Reliable Library Identification VMI

Library Identification Program Design

The program consist of the following components:

® Library extractor: This module handles the introspection aspects required to
extract the library binary from the guest VM memory. It does so by making use of
LibVMI

e Library Identifier: This module generate the fingerprint of the selected library
and then compares it against the reference data base

e Reference Data Base: It contains 151 fingerprints from different versions of
different libraries

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 16 / 29

Library Extractor Implementation

This module is in charge of:

O—0—0—0

Pause the VM to access ~ Walk through the kernel Dump the VM memory Resume the VM
the guest VM memory data structures to identify pages where the library execution
in a consistent way the relevant memary binary was loaded

pages

Kernel Data Structures:

task_struct mm_struct

vm_area_struct* mmap

B4 memory_page

g
I
mm_struct *mm vm_area_struct *vm_next \\ H
— struct path struct file w I&/ memory_page
struct dentry struct file * vm_file ’ﬁ
® || struct vismount 'mnl| struct path ‘ inary code

struct inode | -
struct dentry *dentry | || structinode |
d_name = libc-2.23.s0

. Velasco (UVA) Reliable Library Identification VMI bruary 7, 2017 17 /29

Library Identifier Implementation

This module is in charge of:
°

Generate a fingerprint from the extracted library. This is done by executing the
Unix command Strings.

Calculate the Match Score for each fingerprint in the reference DB
__ |SamplenReference|
o MatchScore = | SampleUReference|

e Sort the results and return the top five Match Scores

N. de Bruijn, L. Velasco (UVA)

Reliable Library Identification VMI

February 7, 2017 18 /29

Reference Data Base Creation

The following step were followed to create the DB:

@ Download the source code from different versions of different libraries. Including
the ones that will be tested (libc and libncurses)

@ Build the different libraries by only passing the argument
- - prefix=<directory>

© Generate a fingerprint for each share object created during the building procedure.
This is done by executing the Unix command Strings

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 19 /29

Library ldentification Program Output

Match | Fingerprint in the DB Match | Fingerprint in the DB
20.59% libc-2.23.s0.strings 15.50% | libncurses.so.5.9.strings
19.73% libc-2.22.s0.strings 15.47% | libncurses.so0.5.8.strings
19.71% libc-2.24.s0.strings 15.20% | libncurses.so0.5.7.strings
19.34% libc-2.21.s0.strings 14.00% | libncurses.so.6.0.strings
18.78% libc-2.20.s0.strings 4.89% libjpeg.s0.9.2.0.strings
18.25% libc-2.19.s0.strings 4.65% libmenu.so.6.0.strings
3.56% libjpeg.s0.9.2.0.strings 4.48% | libresolv-2.23.s0.strings
2.91% | libncurses.so.5.9.strings 4.41% libresolv-2.24.so.strings

Table: Output for libc-2.23 Table: Output for libncurses-5.9

® The low match scores are due to the way the DB was built and the fact that some
pages may be swapped out

® The match score obtained with the original .so that was loaded in memory is :
97.06%

® | ess than 9% is considered a mismatch

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 20 /29

Efficiency and Effectiveness Experiments Design

® The program was executed 100 times per load configuration and per library
(libc-2.23 or libncurses-5.9)

® Each load configuration represent either the hypervisor’'s CPUs or the guest VM's
CPUs stressed at 0% (low), 50% (mid) or 100% (high)

® Data gathered during the experiments:

Pause Time
Identification Time
Memory Usage
CPU Usage

Match Score

O O O O O

® For each of the above values the mean and the standard deviation was calculated

® Two extra experiments were executed in which either the hypervisor's memory or
the guest VM's memory was stressed at 100%

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 21 /29

Pause Time Results - libc

Time in (ms)

350

250

g

0

VM Low Load
97.65
Low Mid
Hypervisor Load

. Velasco (UVA)

350

250

Time in (ms)

150

100

High

liable Library Identification VMI

99.81

VM High Load

Hypervisor Load

bruary 7, 2017

High

22 /29

Identification Time Results - libc

Time in (ms)

100

0

VM Low Load

485.5

Low Mid

Hypervisor Load

Velasco (UVA)

1000

Time in (ms)

785.2

High

Reliable Library Identification VMI

325.8

VM Low Load

Mid

Hypervisor Load

February 7, 2017

1018.7

High

Effectiveness Results

® Match scores are not affected by the CPU load

® However they are affected by the memory load as shown in the following table:

Library | Not Stressed Memory | VM Memory at 100% | Xen Memory at 100%
libc 20.606% =+0.007 20.585% +0.007 20.248% +0.005
libncurses 15.500% =+0.000 15.500% =+0.000 15.489% 40.020

Table: Effectiveness Under Heavy Memory Load

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 24 /29

Library Tampering Experiments (1/2)

o Are the strings containing version information relevant to the library identification?

GLIBC_2.22

GLIBC_2.23

GLIBC_2.24

glibc 2.24

NPTL 2.24

GNU C Library (Ubuntu GLIBC 2.24-Oubuntub)
stable release version 2.24, by Roland
McGrath et al.

Figure: Example of strings containing version information of libc-2.24

e Manually tamper the sample fingerprint to include strings containing version
information of libc-2.24

Sample Fingerprint | Libc-2.23 Ref. Fingerprint | Libc-2.24 Ref. Fingerprint
libc-2.23 original 20.60% 19.82%
libc-2.23 tampered 20.59% 19.83%

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 25 /29

Library Tampering Experiments (2/2)

e Remove every string containing version information from the sample and reference
fingerprint

Match | Fingerprint in the DB Match | Fingerprint in the DB
20.59% libc-2.23.s0.strings 20.54% libc-2.23.s0.stripped
19.73% libc-2.22.s0.strings 19.70% libc-2.22.s0.stripped
19.71% libc-2.24.s0.strings 19.68% libc-2.24.s0.stripped
19.34% libc-2.21.s0.strings 19.31% libc-2.21.s0.stripped
18.78% libc-2.20.s0.strings 18.74% libc-2.20.s0.stripped
18.25% libc-2.19.s0.strings 18.22% libc-2.19.s0.stripped
Table: Normal Scenario Table: Stripped Scenario

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 26 / 29

Implementation Limitations

@ Unix only
@ One to many comparison
© Dynamically linked libraries only

@ |dentification time directly depend on the amounts of records in the reference data
base

@ LibVMI offsets requires guest kernel access
@ Swapping of memory pages affect the results

@ When a library that is not included in the reference data base goes through the
identification process, false positives can be observed

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 27 /29

Conclusion

@ LibVMI can be used to efficiently extract libraries from the VM’s memory

@ Printable strings can be used as fingerprints to accurate identify a library when the
library is in the database

© Performance measurements shows that our implementation perform in a
reasonable manner, even under high system load

@ Accuracy of identification was not effected by the load of the systems

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 28 /29

® Explore ways to;

o improve the database creation to obtain better matching results
o improve the scalability of the program
o identify library behaviour using VMI techniques

® Extend the functionality of our program to support vulnerable library scanning

N. de Bruijn, L. Velasco (UVA) Reliable Library Identification VMI February 7, 2017 29 /29

