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Abstract

The Internet is growing and due to de-aggregation, many more smaller
networks are being announced. This increase of routes, together with
the sequential nature of the BGP best path calculation of routes, poses
an issue for route servers operated by Internet Exchanges because of
significantly increasing convergence times. If the calculation of routes
could be done in parallel, route servers would benefit from the multi-
core capabilities of processors. In this paper multiple solutions are
proposed on the protocol design as well as a practical implementation
to decrease convergence times and overcome the problem at hand.
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Introduction

1 Introduction

The Internet is growing in number of people connected to the Internet1, as well as the
number of prefixes that are being announced worldwide 2. This increase is not only due
to an increase of IP addresses in use, but also has to do with the de-aggregation of pre-
fixes within the IPv4 address hierarchy. With de-aggregation of prefixes is meant that
larger prefixes (for example /22 networks) are announced as multiple smaller networks
(for example four /24 networks). This can have a great impact on the global routing ta-
ble as this table will heavily expand since less summarizing can be done as a consequence.

The main routing protocol in the Internet is the Border Gateway Protocol (BGP).
BGP was introduced in 1989 and back then, its architects had not foreseen a number
of shortcomings within the protocol. Many of these shortcomings were related to the
increasing size of the Internet. Significant scaling additions have been done since, includ-
ing the introduction of Soft Reconfiguration (SR) and Route Refresh. SR has become
obsolete due to the fact that the underlying deficiencies have now been addressed within
BGP itself, whereas Route Refresh is still actively used to request re-advertisements
from a peer without resetting the entire connection.

Even though many shortcomings have been addressed, at this point in time there
is still a mostly unanswered shortcoming with regards to the sequential processing of
routes. When a peer announces new routes, BGP needs to calculate the best path to a
certain prefix according to a best path selection algorithm. This calculation is nowadays
still done in a sequential way, generally resulting in the inability to benefit from multi-
core processors. This can cause additional instability if it renders the daemon unable to
reply to KEEPALIVE messages.

BGP is used exhaustively in Internet exchanges points (IXPs), where interconnec-
tions between peers are accommodated. These IXPs enable BGP speakers to setup BGP
peering relations on a peering LAN. Peering at these IXPs is often done by means of a
route server. Such a route server functions as a super-peer in an eBGP environment.
This means the route server functions almost like a route reflector, with one of the core
differences being that the route server works in eBGP and a route reflector in iBGP.
Besides that, a route server commonly is not a router but an actual server. Customers
of the IX can set up peering to the route server and thereby announce their routes to all
other peers on the peering LAN. This eliminates the need to peer with all the other IX
customers directly, as the routes are already being exchanged through the route server.

Route servers are a typical example where the shortcoming in sequential processing
is observed. When a large amount of BGP speakers are sending UPDATE messages to a
route server, it has to calculate the best paths from all these UPDATES, in a sequential

1http://www.internetworldstats.com/stats.htm
2http://www.cidr-report.org/as2.0/
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way. This leads to one core of the server running at a 100% utilization, whereas other
cores remain idle. This lack of multi-core support increases convergence times for the
whole environment which is expected to worsen as the number of routes and peers grow
larger.

1.1 Problem statement

This research focuses on improving this processing of routes and finding ways to improve
(shorten) convergence times. As the bottleneck appears to be in the sequential processing
of UPDATES, possibilities will be evaluated to multi-thread the BGP daemon. This
research aims to improve both the protocol as described in RFC 4271 as well as find
solutions on implementations themselves.

1.1.1 Research questions

Considering the problem described above, the main research question for this project is:

What improvements can be made to the Border Gateway Protocol (BGP) or
its implementations to resolve current performance bottlenecks when process-
ing updates?

In order to formulate an answer to this question, the following sub-questions have
been identified:

• What is the root cause of the perceived increasing convergence time?

• What past work has been done to solve this specific issue?

• What optimizations can be done to resolve this issue?

1.2 Outline

The rest of this document is set up as follows. First, in section 2, background information
is given on BGP, as a protocol as well as the use of route servers and the decision process
in BGP. Section 3 discusses the methodology used during the research. The testbed that
was set up is also explained there. Then section 4 discusses the results of the tests that
were conducted and several solutions are proposed there. In section 6 the research is
discussed, after which section 7 concludes the paper including future work.
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2 Background information

This chapter dives into BGP in more detail, aiming to provide the necessary background
information needed to fully understand the rest of this paper. As BGP could cover a
paper of its own, only the aspects relevant for this paper are explained in detail.

2.1 A Border Gateway Protocol

When it became apparent that the Exterior Gateway Protocol (EGP) first defined in
RFC 904[1] was ill-equipped to scale with the expanding Internet, the Border Gate-
way Protocol (BGP) formalized in RFC 1105[2] which addresses some of these issues,
has since become the de-facto standard for exchanging network reachability information
over the Internet. Over the years, even this protocol has undergone further development,
often as a result of practical shortcomings. This has resulted in the current standard A
Border Gateway Protocol 4 (RFC 4271[3]) more commonly known as BGPv4 or BGP-4.

The protocol is used by many organizations of all sizes. BGP allows one to control
the flow of outgoing and possibly incoming traffic. In most cases, this is used to achieve
multi-homing. This means traffic has two or more ways to enter or exit a given network.
Although other use-cases exist, including ones outside the domain of Internet routing,
the problem defined pertains to the original use case of BGP.

2.2 BGP protocol architecture

BGP is fundamentally built on the notion of Autonomous Systems (ASes) which are
administrative areas where reachability information can traverse through. This is also
where BGP inherits its loop-free properties from, by not importing routes that con-
tain themselves in an AS-path. In order to exchange this kind of information, other
mechanisms are in place which will be discussed in the sections below.

2.2.1 Peering

BGP runs on the Transmission Control Protocol (TCP) which handles complications
such as retransmissions and sequencing. Using this technology, it allows BGP to set
up peerings between instances such that data containing network information can be
exchanged between them. To establish these peerings, BGP uses a Finite State Model
(FSM). Because this research does not revolve around the FSM theory, there is no need
to delve deeper into this concept. It is only relevant to known that BGP has five potential
states it can have during the formation of a peering, with the BGP Established state
being the desired state.
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2.2.2 Messaging

When a peering is established, peers can exchange messages. A total of five message
types exist that can be exchanged. Most relevant to this research are the UPDATE and
KEEPALIVE messages.

2.2.2.1 UPDATE

The UPDATE message contains the actual network information that BGP wants to
exchange. It contains prefix information formally named Network Layer Reachability
Information (NLRI), which is composed of prefixes (e.g. 128.66.0.0) and lengths (e.g.
/16) in Classless Inter-Domain Routing (CIDR) format[4]. For each NLRI, attributes
are added such as AS PATH and NEXT HOP for the peer to base decisions on. This
type of message is used to both announce and withdraw information.

A notable composition of an UPDATE message, is one that does not contain any NLRI.
This is specified as an End-of-RIB marker which indicates that a BGP speaker has
communicated its entire routing table, known as a Routing Information Base (RIB),
through (multiple) UPDATE messages. This feature was introduced in the Graceful
Restart Mechanism for BGP described in RFC 4724[5], and is not part of the initial
BGPv4 standard.

2.2.2.2 KEEPALIVE

To validate the reachability of a peer, the KEEPALIVE messages within BGP are used
rather than any TCP-based mechanism. KEEPALIVES are sent every one third of the
Hold Time interval which is communicated in the OPEN message when peering is set
up. If a peer does not receive a KEEPALIVE, UPDATE or NOTIFICATION message
within the hold time, the peering will be closed.

Also, the KEEPALIVE message indicates an implicit End-of-RIB and can be used as
such in some implementations[6].

2.2.3 Decision Process

Once peering is established and maintained, and UPDATES have been sent and received,
BGP initiated the Decision Process to utilize the acquired information. This process
consists of three phases. The RFC describes the structure of tables used to hold this
information and also the rules as to the progression of phases. The structure itself is only
conceptual and the actual implementation is left to the programmer. Figure 1 shows an
abstract representation of the tables and processes defined in the RFC.

The Adj-RIB-In tables store the routing information sent by a remote peer where it
awaits processing. For each peer, there is a separate table.
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The Loc-RIB holds a list of the best path routes. This list is generally a subset of
paths learned in all Adj-RIBs-In. From here the data is ordinarily imported into the
Forward Information Base (FIB) where a router can use it to make routing decisions.
This is not the case when it pertains to a Route Server implementation. The reason be-
ing that a route server does not have the function to route traffic itself. A more in-depth
description regarding route servers will follow later in chapter 2.4.

The Adj-RIB-Out tables are similar to the Adj-RIBs-In but serve a reversed function of
sorts. Each Adj-RIB-Out will contain information that is to be disseminated to its peer.

To emphasize, this is how the tables are described in the RFC. However, the RFC ex-
plicitly allows for tables to be combined within an implementation as to achieve better
optimization of hardware.

Figure 1: Mechanism described in RFC 4271 section 9.1

These tables are closely related to the three phases of BGP mentioned earlier, as the
RFC specifies the rules for locking and distribution of data throughout the system as
phase progression occurs.

2.2.3.1 Phase 1: Calculation of Degree of Preference

Once an UPDATE message has been received from a certain peer, phase 1 of the BGP
protocol should commence. In practice, the phase is initiated when receiving the End-of-
RIB mark as to ensure the remote peer had sent all its routing information[7][8]. First,
any prefixes or attributes received that are marked as undesirable are dropped or altered
by means of the In-policy [9].
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Then, the corresponding Adj-RIB-In is locked as to avoid any inconsistencies during
this phase. After this, the degree of preference is calculated for all entries within the
Adj-RIB-In. When this is done, the lock is released and BGP progresses to phase 2.

Figure 2: Graphical representation of phase 1

2.2.3.2 Phase 2: Route Selection

As phase 2 starts, all Adj-RIBs-In are locked. What follows is a best-path calculation
that is run over the combined routing information of all Adj-RIBs-In. If only one peer
announced a certain prefix, it is by definition the best (and only) path for that prefix.
In many cases however, a path to a certain prefix may be announced by multiple peers.
To determine the best path, the following criteria are described by RFC 4271:

• the highest degree of preference of any route to the same set of destinations, or

• is the only route to that destination, or

• is selected as a result of the phase two tie breaking rules specified in RFC 4271
Section 9.1.2.2.

By the end of this phase, each prefix will have a single route entry in the Loc-RIB. All
processed routes will be cleared from the Adj-RIBs-In, excluding unresolvable routes and
the locks are removed. Unresolvable routes refer to routes where the next-hop address
can currently not be reached. It may be so that the route refresh feature is implemented,
which also contains the UPDATE data received from peers. This data is not cleared.
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Figure 3: Graphical representation of phase two

2.2.3.3 Phase 3: Route Dissemination

When phase two has no more work to do, phase 3 kicks off. It takes the list of best
paths from the Loc-RIB and may alter them in accordance with any Out-Policy applied.
Afterwards, the routing information is disseminated to its peers.

2.2.3.4 Phase rules

The RFC specifies when a phase starts and ends. Additionally, there are rules as to
what phases can run concurrently. These rules are summarized below:

• Phase 1 is invoked whenever receiving an UPDATE message.

• Phase 2 is invoked on completion of Phase 1.

• Phase 3 is invoked on completion of Phase 2 (more triggers exist).

• Phase 2 is blocked from running while Phase 3 is in process.

• Phase 3 is blocked from running while Phase 2 is in process.

2.3 BGP implementation architecture

While the RFCs describe the way BGP should behave, they do not result in a function-
ing application. The translation of the RFC into actual functioning code is referred to
as the implementation of an RFC or standard. Although the RFCs strictly define some
BGP mechanisms, others do not and leave it to the developer. One example of this
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phenomenon is the way the conceptual RIBs are implemented, where it is left upon the
developer to implement multiple or a single table in the application. This is why there is
a large variety in BGP implementations which differ not only in programming language,
but also in their internal workings. In practice, this results in many open- and closed
source BGP software implementations available, each with different perks and quirks.

A commonality in these implementations is however, that they are all essentially single-
threaded[10]. While applications such as OpenBGPd[11] and GoBGP accomplish some
multi-threading to maintain peering and receive updates, work such as the best path
calculation is still done within a single thread. For GoBGP this has been confirmed to
us by the development team in response to an inquiry.

2.4 Route server

As mentioned, BGP speakers need to set up a peering in order to exchange routing
information. If speaker A would want to converse with speaker B and C, it would need
to construct a separate peering relationship with both these entities. Consider a network
where seven BGP speakers exist and where each speaker wants to receive all available
network information. In order to achieve this, a full-mesh topology has to be created as
portrayed in figure 4.

Figure 4: Full-mesh connection of seven BGP speakers

This results in 21 peering relations and each node maintaining 6 peering sessions.
While these numbers are not necessarily a problem yet, it is evident that a higher num-
ber of participating nodes will stress the scalability of this architecture. Consider that
in an environment such as the AMS-IX, which has about 1350 peers, it would require
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every BGP speaker to maintain 1350 − 1 peering sessions. The first challenge would be
managing the list of peers from an administrative point of view. Secondly, it would take
a considerable amount of resources in maintaining the peerings and processing all the
network information.

In order to avoid this extensive architecture, one of the solutions that can be deployed
is a route server. The route server functions as a super-peer, forming a peering relation-
ship with every BGP speaker as depicted in figure 5. This is generally done in pairs as
to improve availability. However, the use of a route server does not prohibit classical
peerings from being formed.

Figure 5: Route server connection of seven BGP speakers

This setup reduces the stress put on BGP speakers. Not only will the number of
peering relations be equivalent to the amount of route servers, the amount of network
information received is also reduced. This is due to a particularly pleasant side-effect
that a peer will no longer receive multiple routes to the same prefix from other speakers.
Instead, the route server had already accumulated all routes from all peers, selected the
best path and informed its peers only of that particular route for a given prefix.

It is important to observe that while this greatly reduces the stress put on BGP speakers,
the route servers themselves are not so fortunate. These servers still maintain a number
of peering relationships equivalent to the number of BGP speakers. Additionally, they
are confronted with potentially receiving multiple paths to a single prefix resulting in
more calculation work when determining the best path. A trend that will only continue
as the Internet grows in prefixes due to IPv4 de-aggregation and IPv6 traction increas-
ing. Additionally, more organization join these Internet exchanges increasing the total
amount of peers in such a network. As a result, the burdens placed on these single-
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threaded route servers used today are already inducing increased convergence times.

2.5 Related work

Experiments have been conducted to modularize [12], distribute [13][14] or parallelize
[15][16][17] BGP. Nevertheless, these innovations have not solved the problem at hand.
The main reason being either test results showed unfavorable results or it would not
address the focus of this project.

2.5.1 BGP protocol design

In the paper of Lina Ding and others[17] a method is proposed to split the BGP process
in five self-specified phases. These phases are then running in a pipeline. This means
that at any given time, all phases could be doing work simultaneously for independent
tasks. The aim here was to have all five phases doing work continuously, rather than
waiting for other phases to finish first. Some performance was gained, however, the core
issue, namely that processing times of certain phases was long, has not been resolved.
For example, while multiple phases could be active simultaneously, no two of the same
phases would run at any given time.

Looking at the paper of Xuezhi Jiang and others[18], they propose a way to improve
route processing by parallelization. However, in their paper they focus only on dis-
tributed control planes with multiple control elements. In this paper the aim is to have
a broader focus, and actually focus on the protocol design itself rather than having de-
pendencies on specific techniques.

2.5.2 BGP Implementations

During this project, actual BGP implementations were also looked into. This will gen-
erally be open source daemons as then, there will be access to the code. There have
been other initiatives before such as the 2009 Euro-IX project [19] to fork Quagga [20]
and aim to improve, amongst other things, the BGP CPU limitations in the implemen-
tation. Likewise, some closed source software vendors have claimed to have worked on
and implemented multi-threading [21][22]. This is almost certainly referring to only a
part of the BGP process which is also seen in some open implementations.

2.6 Problem considerations

As mentioned, administrators of large scale BGP implementations are experiencing rel-
atively long convergence times in their environments. The first step to proceed with this
project is to confirm that the problem can indeed be reproduced by creating a testbed
with a BGP route server and multiple BGP peers. There is a variety of reasons why this

12
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may not be feasible. For instance, it could be that the hardware available is not capable
of generating enough UPDATE messages to reach a point where this behavior can be
observed. Alternatively, it may prove troublesome to identify what metrics (prefix size,
communities or other attributes) are involved in this process.

Once the issue has been reproduced, an analysis can be done by repeating the tests
and tweaking the metrics. In order to be able to conclude a specific section of the proto-
col is particularly at fault, it is necessary to make a distinction between functions within
the protocol. It is practical to make this distinction based on the phases described in the
background section. This does not only result in a comprehensible categorization, but
is also based on well described BGP steps by means of the RFC. An additional factor
to the three BGP phases is the time it takes for messages to travel over the network.

Consider the total time required to disseminate new routing information from another
peer is 4.

Tnet(1) + Tphase1(1) + Tphase2(1) + Tphase3(1) = Ttotal(4)

While in this example it is assumed that the cost of each step is equal, this is in fact very
unlikely and is merely to illustrate the thought process. Ideally, the testbed will provide
the ability to add, remove or adjust these metrics and to capture the effect on the total
time. It is important to note that, while time is being measured, this in itself is not the
cause of the problem. Instead, the time is a result of a fully utilized core unable to keep
up with the work that has to be done. In essence, either the work has to be reduced or
the capacity increased.
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3 Methodology

During this research multiple tests have been conducted. This chapter explains in detail
how the tests were conducted including definitions and assumptions made beforehand.
Also the tools used to gather measurements are explained here.

3.1 Presuppositions

Before describing how the tests were conducted, it is important to state the definitions
used during these tests. These definitions define the starting point and clarify what has
effectively been measured. Besides these definitions, some assumptions had to be made
in order to be able to conduct the experiments and get the needed results.

3.1.1 Definitions

One of the definitions that need clarification is the convergence time. This is the time
it takes for the whole setup to converge. This means, the route server as well as all
peers have the same information (shared amongst them) and the route server is done
sending and receiving updates. To clarify, figure 6 shows the CPU usage on the route
server during one of the conducted tests. The graph starts at the time the first UPDATE
message is received, this is marked as the ”START”. Before that point the CPU was
idle. In the graph one can see that the CPU usage spikes to 100% and stays around
that number for a longer time. During the spike, the route server is busy processing
UPDATE messages from its peers. When the whole environment is converged, the CPU
usage drops to idle again, this is marked as the ”END” in the graph.

14
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Figure 6: CPU utilization during testing

In some cases a dip occurs in CPU usage of the route server. This usually happens
when a number of peers sent UPDATE messages, but some peers have not sent the
UPDATE yet. As soon as the remaining peers start sending their UPDATE messages,
the route server spikes to 100% CPU usage again. In the graph this happens at the
”NEW UPDATE” marker.

3.1.2 Assumptions

BGP has quite some optional configuration choices, for example, the possibility to add
policies. In the tests conducted, there were deliberately no policies configured, except
for the forwarding of all routes. This was done because the exact problem should be
pinpointed, which should occur even in the most basic BGP environments. Adding
any extra complexity might have an impact on the route server performance so the
decision has been made to keep the environment as clean as possible. This is also why
no additional BGP attributes have been used in the experiments.

3.2 Testing framework

This section describes the testing framework used for describing and designing the tests
that were conducted. First the different variables that were measured are explained,
after which the testbed that has been set up is explained in detail.
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3.2.1 Variables

As mentioned before, several variables were measured. Besides CPU utilization, also
memory and bandwidth usage were measured. The reason being that bandwidth clearly
shows a spike when (larger) UPDATE messages are being sent and received. When the
environment is converging, bandwidth also shows a clear spike after which it drops down
to a more idle state in which only KEEPALIVES are being sent. Lastly, also the logging
of BIRD was looked at, which shows exactly what happens in the BGP daemon at a
given time. From this logging it was possible to precisely pinpoint when the first until
the last UPDATE was received.
During the tests the overall variable that is being measured, is the convergence time. In
other relatively small tests, as compared to real world setups, convergence times of fifteen
minutes have been demonstrated[23]. As convergence time also depends on how quick
peers re-establish connections to the route server, the measurements are not supposed
to be precise to the second. This means it is very likely that differences in convergence
time, using the exact same configuration, can be off by multiple seconds.

3.2.2 Testbed

The testbed on which the experiments were conducted, consisted of one route server and
eight servers where BGP peers were spawned in docker containers. Both are explained
below in more detail.

3.2.2.1 Route server

On the route server BIRD was installed as primary BGP daemon, since this is the
most commonly used route server implementation nowadays[24]. BIRD was configured
as minimalistic as possible based on a template configuration file provided by BIRD 3.
Most of the configuration was kept intact, apart from the peer specific configuration and
the route limit. Also, some additional logging parameters were added, which allowed
for a more verbose debug logging. Several levels of debugging had been tested and from
this it was concluded that the level used did not have any significant impact on the
performance. More verbose levels were tested as well, which had tremendous impact
on performance as every single route that was received was also being sent to syslog,
leading to 50% CPU utilization being dedicated to syslog alone. The debug levels used
in the tests were the following:

debug protocols { states, interfaces, events, packets }

Debugging on states was enabled in order to get a log entry for protocol state changes.
Interfaces was enabled to observe any changes occurring on interfaces, that may affect
BGP, like going up or down. Events was used to gather log entries from the internal

3https://gitlab.labs.nic.cz/labs/bird/wikis/Simple route server
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protocol and packets was used to ensure a log line gets printed for each packet sent and
received.

3.2.2.2 Peers

Eight servers were available to this project for use in the testbed. Docker was installed
and configured on these machines, in order to run multiple BGP daemons efficiently. The
BGP implementation used on the peer side is the open source ExaBGP implementation 4

which is primarily used for testing purposes. ExaBGP was used in the containers because
it is flexible and allowed for a simple python script to run, in order to configure all routes
that needed to be announced. As the goal is to measure the convergence time identifying
a bottleneck on the route server, the BGP peer implementation is of little consequence as
long as it does not pose a bottleneck itself. Preliminary testing indicated that increasing
the amount of simultaneously active ExaBGP containers above one hundred, within a
single server, would cause instability in creating and maintaining a peering relation with
the route server.

3.3 Scenarios

To conduct the tests, a number of different scenarios were created. These scenarios differ
in either the composition of peers or the composition of prefixes. For prefixes, only IPv4
addresses have been used since it is still the predominant network protocol. This is
due to the work that would be required to set up the IPv6 environment, while it is not
expected to react differently than IPv4.

All tests were conducted in the same manner, taking the same steps every time.
These steps were the following:

1. Start BIRD daemon on route server

2. Start ExaBGP containers

3. Verify all peers are established

4. Simulate link flap (set link on route server down)

5. Re-enable link on route server

6. Start all measurement tools

7. Monitor first UPDATE message, this is the START marker

8. Verify all peers are established

9. Monitor last UPDATE message, this is the END marker

4https://github.com/Exa-Networks/exabgp
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Each test was conducted three times to ensure the results are representative. After
the three test runs, the BIRD BGP daemon was restarted to ensure previous tests could
not influence other tests. This was done as a safeguard that BIRD was not left processing
in the background, or using any additional memory from the previous test.

3.3.1 Peers

Three different scenarios were created with the differentiator being the number of peers,
in order to measure when the problem would occur and become a bottleneck. The first
tests were done with the least number of peers possible. Thereafter tests were done with
as many peers as possible within the testbed. At last, a real world scenario was created
to get a more realistic scenario instead of a ’clean’ lab environment.

3.3.1.1 Three to one

The first scenario created included three peers and one route server. The decision was
made to test with three peers instead of one. This was done because with only one peer,
no best path calculation is done since there is only one path, which is then automatically
the best path. If two peers had been used, the same issue would occur when bringing one
BGP peer down, since if one peer would fail the other automatically becomes the best
path. Ultimately with three peers, one peer could fail, leading to the route server still
needing to calculate the best path between the two remaining peers, unless of course,
the failing peer would not have been the best path for any prefixes.

3.3.1.2 Many to one

The second scenario involved as many peers as possible. In the testbed used for this
research, it has been determined a number of 800 peers at maximum. This maximum
number is a hardware limitation, so by adding more hardware it would have been possible
to spawn even more peers.

3.3.1.3 Real world

The scenarios before are not typical examples one would find in a real world environ-
ment. All peers are initially announcing the same prefixes, which will not happen in real
life. In order to find differences between the ’clean’ lab environment and overlapping
prefixes of different sizes, this real world example was created. While it is infeasible to
approach the scale of the real world situation, it may be interesting to test the effects
of overlapping prefixes with a realistic path to AS ratio. To emphasize, this setup is
neither in scale nor attribute-use representative of existing BGP networks. We have
merely used available data of real world implementations to help define the amount of
prefixes for these tests. In order to differentiate different AS sizes in a coarse way, the
categories defined in another BGP paper[25], have been adopted. In this paper, the
following AS-size categories have been defined:
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• Tier 1: AS customer cone size of 5000+

• Tier 2 Large: AS customer cone of 1000-4999

• Tier 2 Medium: AS customer cone of 100-999

• Tier 2 Small: AS customer cone of 10-99

• Tier 3: AS customer cone of 0-9

The customer cone seen in these categorizations refers to data that is publicly avail-
able from the Center for Applied Internet Data Analysis (CAIDA) website. Table 1
below shows an up-to-date count of all public ASes at time of writing, categorized by
tier as mentioned above.

Category Amount of prefixes AS customer cone

T3 0-9 52945 (96.7%)
Small T2 10-99 1554 (2.8%)
Mid T2 100-999 233 (0.4%)
Large T2 1000-4999 30 (0.1%)
T1 5000+ 10 (0.0%)

54772 (100%)

Table 1: Basis for the real world scenario

Knowing that the testbed, consisting of eight servers, can run 601 BGP instances
in a stable manner, the work has been divided as displayed in table 2. Note that the
available resources have been divided roughly by the same ratios as seen in table 1.

Server name T3 T2s T2m T2l T1

Athens 62 3 1 1 0
Bern 82 4 1 0 0
Bordeaux 82 4 1 0 0
Brussels 82 4 0 0 0
Copenhagen 82 4 0 0 0
Dublin 87 4 0 0 0
Helsinki 92 4 0 0 0
Sheffield 0 0 0 0 1

8 569 (94.7%) 27 (4.5%) 3 (0.5%) 1 (0.2%) 1 (0.2%)

Table 2: Number (and types) of peers per server for the real world scenario

In selecting the exact numbers, some liberty has been taken to tip the scale by
increasing the amount of nodes announcing larger spaces. For example, introducing a
single tier 1 instance causes 0.2% of all instances to be tier 1, in reality there are only
ten of these providers in the real world which is why there they account for less than
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0.0%. Nevertheless a tier 1 node was included mainly due to the reason that it would
otherwise be almost certain no significant convergence times would be seen, based on
past measurements. In the end the main goal was to get a setup with somewhat realistic,
but not necessarily exact, dimensions.

3.3.2 Prefixes

In order to get more insight in the impact of the number of prefixes, multiple numbers
of prefixes have been tested, namely 100, 1.000 and 10.000. Between these numbers of
prefixes a distinction was made between non-unique, unique and partially overlapping
prefixes.

3.3.2.1 Non-unique

With non-unique prefixes is meant that all peers were announcing exactly the same
prefixes. This was done because when all peers start announcing all the same prefixes,
the route server would need to calculate the best path a lot of times, since all peers
provide a path to the same prefix. The paths are thus equal to the number of peers.

3.3.2.2 Unique

To determine if any difference in convergence time exists when using all unique prefixes,
the ’unique’ scenario was composed. This consists of peers only announcing a set of
unique prefixes. This means all announced routes will be best-path and the work put on
the route server for best-path calculation is minimized. For this reason, it is expected
that convergence time will be shorter than non-unique tests with an equivalent amount
of peers and prefixes. By bypassing part of the phase 3 process, this scenario may help
in determining where the CPU utilization is spent during convergence.

3.3.2.3 Partially overlapping

Also overlapping prefixes have been tested in the real world scenario. In that case a large
tier 1 provider would announce a large network (for example /20), and a smaller tier 2
or tier 3 provider would announce multiple small networks (for example /24) of which
a part were a subset of the large tier 1 /20 network. More specific routes are always
preferred over less specific routes (set aside policies). When the tier 1 provider connects
to the route server first and other providers connect later, the best path will be replaced
by the most specific prefix announced. Only when multiple providers are announcing
the same prefix and subnet mask (exact same NLRI) the best path calculation takes
place.

3.4 Measurement tools

To measure CPU usage of a specific process, the top command was used with specific
parameters to get the output for the BIRD process. The parameters used for top were
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-b, to run in batch mode, -n 1, so only one iteration would be done. This output was
piped through grep for the bird process (grep bird$). ps could also have been used
with specific parameters, but the usage percentage that ps shows is the percentage of
time spent running during the entire lifetime of a process5. Due to this difference top
was the better choice. Memory usage was also measured with top so with one process
execution both variables were measured at once. top ran every second during the tests.

In order to measure all traffic going to and from the route server, the bandwidth was
measured with ifstat. By specifying the exact interface with -i, it was ensured only
network traffic from that specific interface was measured. Since a dedicated network
interface was used to connect to the peering LAN, no additional network traffic from
the outside could influence the measurements.

5http://www.unix.com/man-page/all/1/ps/
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4 Results

The results of the tests explained in chapter 3 are shown in this chapter. The results
are ordered per scenario, after which observations are expressed.

4.1 Scenarios

The results of the three scenarios, three to one, many to one and the real world sce-
nario, are shown in this section. Besides these scenarios some additional tests have been
conducted that are explained in section 4.1.4 combined with its results.

4.1.1 Three to one

The first scenario involved the three to one tests. Table 3 shows the convergence time
in seconds.

Number of prefixes 100 1.000 10.000

Run 1 7 5 6

Run 2 6 8 6

Run 3 7 5 6

Average 6,67 6 6

Table 3: Convergence time in seconds with three peers

These results show that there is no significant difference in convergence time between
the different number of prefixes. All nine tries took between five and eight seconds to
converge. This shows that at least at this scale the problem does not occur. There is no
notable difference between 100 prefixes and 10.000 prefixes.

4.1.2 Many to one

The many to one scenario was conducted with 10 peers and 100 until 800 peers, each
time with a 100 peer interval. Tables of all these convergence times can be found in
appendix A. Figure 7 shows the average convergence time plotted against the number
of peers. Each peer was announcing 100 prefixes in this case. It clearly shows that the
higher the number of peers, the longer it takes to fully converge with a maximum of 70
seconds.
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Figure 7: Convergence times with 100 prefixes per peer

Figure 8 is also showing the average convergence time plotted against the number
of peers, now with each peer announcing 1.000 prefixes. The spike at 500 peers was
caused by a hiccup in the system. Apart from the spike this behavior looks a lot like
the previous, and maximum convergence time is around 70 seconds here as well. This
shows there is no significant difference between 100 and 1.000 prefixes per peer.

Figure 8: Convergence times with 1.000 prefixes per peer

Figure 9 shows the same graph as figures 7 and 8 but with each peer announcing
10.000 prefixes. The graph shows that from 500 to 600 peers there is a more steep
increase in convergence time. The overall convergence time observed with this number
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of prefixes resulting in 400 seconds is significantly higher than the 70 seconds observed
before.

Figure 9: Convergence times with 10.000 prefixes per peer

When these graphs are plotted in the same figure, it shows in figure 10 that scaling
up to 10.000 prefixes per peer has a major impact on convergence time compared to the
lower amounts.

Figure 10: Convergence times combined
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4.1.3 Real world

Testing the real world scenario led to behavior not seen before during previous tests.
With all previous tests the End-of-RIB indicated the end of the convergence time. Af-
ter receiving the last End-of-RIB the route server went idle and was just sending and
receiving KEEPALIVE messages. However, when running the real world scenario, long
after receiving the last End-of-RIB message the route server was sending UPDATE mes-
sages to its peers. Table 4 shows the times until the last End-of-RIB as well as the
time until the last UPDATE message was sent. The latter indicates a converged state.
As described in 3.3.1.3, the real world scenario involved 601 peers with a variety in the
number of prefixes announced.

Real world Time to End-of-RIB Time to last UPDATE

Run 1 130 535

Run 2 139 512

Run 3 128 530

Average 132,33 525,67

Table 4: Convergence time in seconds during real world scenario

Comparing the real world scenario with the many-to-one scenario using 600 peers, it
shows that the real world scenario overall took more time to converge.

Number
of prefixes

100 1000 10000
Real world
End-of-RIB

Real world
time to last
UPDATE

Run 1 43 39 241 130 535
Run 2 38 38 265 139 512
Run 3 40 54 281 128 530
Average 40,33 43,67 262,33 132,33 525,67

Table 5: Convergence times of 600 peers vs real world

4.1.4 Additional tests

As described in 3.3.2, the aim was to test multiple types of prefixes. Besides the real
world tests, which were a mixture of unique and non-unique prefixes, all tests above
were conducted using non-unique prefixes. When the tests with only unique prefixes
were attempted, previously unseen problems would occur. The route server was running
out of memory very quickly, starting to swap and becoming very slow and unresponsive.
After some time either the BIRD daemon crashed, or KEEPALIVE messages were not
replied anymore, leading to sessions timing out.
The additional use of memory is not a surprise as the Loc-RIB will grow way larger than
when all prefixes are the exact same. With 800 peers announcing 10.000 of the same
prefixes, the Loc-RIB on the route server only contains 10.000 routes, as it decided on
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the best path for these prefixes. However, when 800 peers start sending 10.000 unique
prefixes the Loc-RIB would need to store 8.000.000 routes, obviously using more memory
than with 10.000 routes. Depending on the implementation, it could be that when routes
are received in the Adj-RIB-In and they are being copied to the Loc-RIB, the entries are
also copied in memory, thereby occupying double the memory for a short time. When
a machine is low on memory (like the route server used here) it starts swapping and
the process can get slow because it needs to read/write to/from the slower disk instead
of the faster memory. This could explain why BIRD was not answering KEEPALIVE
messages anymore, if the process would be waiting for blocking I/O.

4.1.4.1 Export

Another test that was conducted, was based on the hypothesis that the bottleneck could
be in the transmission of UPDATE messages from the route server to peers. The main
argument for this was that a route server with 700 peers, that receives one route, needs
to send UPDATE messages to 699 peers with that new route.
A good way to test if this indeed poses a problem, is to configure BIRD not to export
any routes. This was done by adding export none in the BIRD configuration. This
tells BIRD to not export any routes to its peers. The tests done involved 800 peers and
10.000 prefixes per peer.
Figure 11 shows the difference in average convergence time. This figure shows the con-
vergence time with export disabled being even higher than with export enabled.
Table 6 shows why that is the case. Out of three tests with export enabled, the third
test had an exceptional convergence time of 322 seconds, which compared to the other
two tests differs a lot. When discarding this third test, convergence time comes at an
average of 451,5 seconds. This compared to the convergence time with export disabled
(438,3 seconds) shows a slight increase in convergence time, however this difference in
convergence time is too small to indicate the bottleneck would be in the exporting of
routes.
Also during the real world example, where the route server was for a longer time sending
UPDATE messages to its peers, CPU utilization dropped way before the route server
stopped sending UPDATE messages, indicating the sending of messages is not a CPU
intensive action.

Export Enabled Disabled

Run 1 446 425

Run 2 457 436

Run 3 322 454

Average 408,33 438,33

Table 6: Convergence times with and without export enabled
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Figure 11: Convergence times with and without export

4.1.4.2 GoBGP

In order to verify that the increasing convergence times are also observed in other multi-
threaded implementations, a last additional test was conducted. This last test covers a
small part of the extensive BIRD tests with using the same scenarios. This test involved
the GoBGP implementation. Due to time constraints it was not possible to conduct all
tests done with BIRD however, the results do show an increase in convergence time just
as the BIRD test results show.
During the GoBGP tests, only one set of prefixes was used, all peers were announcing
the same 100 prefixes. The number of peers was increased from 50 to 100 and 150. To
configure GoBGP as route server, a configuration sample from the official documentation
6 was modified to suit these tests. The GoBGP configuration can be found in appendix
C.
Table 7 shows the results for the tests conducted. The convergence time was measured
with 50, 100 and 150 peers all announcing 100 prefixes. Figure 12 shows that, just as
during the other tests, the convergence times do increase significantly when adding more
peers.

6https://github.com/osrg/gobgp/blob/master/docs/sources/route-server.md
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Number of prefixes 50 100 150

Run 1 33 57 116

Run 2 69 59 132

Run 3 57 61 120

Run 4 64 103 122

Average 55,75 70 122,5

Table 7: GoBGP convergence time in seconds

Figure 12: GoBGP Convergence times

It should be noted that because of the low number of test runs for the GoBGP tests,
no hard conclusions could be drawn. However, the results do show the same trend that
was observed in the results of the tests with BIRD. Furthermore, the number of peers
and prefixes were decreased in these tests compared to the BIRD tests. Still the con-
vergence times turned out relatively high compared to BIRD. There are two reasons
why this may be the case. BIRD uses a single-table which has shown to drastically im-
prove performance [23]. While this is not yet the case for GoBGP, this is currently the
main focus of the development team and these numbers may be a result of the single-
table development implementation of GoBGP. Additionally, the GoBGP route server ran
on a different server due to hardware failure which may also have an effect on the results.

4.2 Observation summary

In the three to one setup, no significant convergence times have been observed. This is
not at all surprising considering this does not in any way begin to approach the scale
of IXPs which are afflicted by this issue. Nevertheless it is valuable to observe that a
setup with 800 peers itself does not cause any issues, which could have been possible
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considering the amount of UPDATE messages that need to be crafted to inform all peers.

After scaling up the amount of prefixes announced by each peer, the convergence prob-
lem does appear in the many to one tests. The convergence times of 100 and 1.000
peers show an increasing trend which is to be expected when increasing the amount of
NLRIs that need to be processed. It is in the 10.000 prefixes test, which has a more
realistic scale compared to IXPs, that increasingly problematic convergence times are
observed. Within these tests, we can also see that the increase is not linear. That is
to say, the convergence time of 10.000 prefixes with 400 peers is not half of 800 peers.
Unfortunately, we do not have a solid theory as to why this is the case.

Additionally, it is not possible to deduce to what degree either the prefixes or peers
are causing the issue. This is relevant because if route dissemination (phase 3) is caus-
ing most of the delay, adding another peer (containing 10.000 prefixes) should cause
a greater increase in convergence time than when adding an additional 10.000 prefixes
over existing peers. Unfortunately no results for this hypothesis can be generated in this
testbed due to constraints in the available hardware.

However, the effects of phase 3 have been tested in an alternative way. This is done
in the tests where the dissemination of routes was disabled by means of the export fea-
ture. The results show that no serious difference in convergence times occur.

In the real world tests, the only notable observation was that after receiving the last
End-of-RIB, the route server was still sending out UPDATE messages. This can be
explained due to the existence of more unique prefixes in this setup than compared to
the 10.000 unique prefixes found in the many to one tests.

Lastly, when running similar tests in GoBGP, comparable increases are found. A striking
difference though is that, in these tests, GoBGP was significantly slower than BIRD. This
does not reflect the findings presented at the Euro-IX forum[26]. Two possible reasons
may be related to a change in hardware and the use of a different GoBGP (developer)
build. It is evident that no comparisons are to be made between the GoBGP and BIRD
convergence times based on these measurements. We can only state that within GoBGP,
a similar trend can be observed with regards to the increase in convergence time.
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5 Proposed Solutions

In this section multiple solutions will be proposed to improve the convergence time
observed before. On the protocol side, two solutions are proposed and also a solution
on implementation side is proposed.

5.1 Considerations

The results show similar behavior to what has been described by administrators of large
BGP implementations. It is fair to say that, when reaching the 600 peers in any of the
BIRD tests, the route server clearly shows a delayed converged state. Servers with more
powerful hardware may be able to prolong this from occurring, therefore the numbers at
which a delayed converged state occurs is only significant within this testbed. More im-
portantly, the tests have been able to induce this effect with tweaking solely the amount
of peers connected and the amount of prefixes they announce. This result somewhat
simplifies the problem as more complex setups (such as using large communities) do not
appear to be necessary and can be avoided.

It may seem plausible to suggest that phase 1 of BGP is causing these growing con-
vergence times based on the knowledge that the amount of prefixes being received is
constantly increasing due to IPv4 de-aggregation and IPv6 gaining traction. However,
the background research has uncovered there are implementations, such as GoBGP,
which have multi-threaded this phase. However, the results of GoBGP tests show that
even then the same convergence problems occur. Because of this, it is unlikely much can
be gained here to reduce the issue.

As mentioned before, there is a theory that route dissemination (phase 3) is the main cul-
prit in increasing the convergence time. The main hypothesis for this, is that the crafting
of update packets is the most resource demanding step in the BGP process. If this were
to be true, then increasing the amount of peers would contribute more to the problem
than increasing the prefixes. Unfortunately, the available testbed was unable to scale to
a point to do valid comparisons for this, such as 600peers×1.000pfx = 600.000totalpfx
versus 1.000peers × 600pfx = 600.000totalpfx. While comparing this was not viable,
it is possible to avoid the dissemination of routes altogether. In BIRD this was con-
trolled by toggling the ”export” feature. The results then show that even with route
dissemination disabled, no significant changes in convergence times could be observed.
For this reason, it is also less likely for phase 3 to be the main contributor to the problem.

What remains is phase 2 where the best path selection occurs. During the background
research, the documentation of multiple implementations have been examined and in-
dicate that no multi-threading for phase 2 is implemented in any of these. Because of
this, the increase in prefixes that have to be processed cannot be shared across multiple
cores as is the case for phase 1.
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Based on this, it seems plausible that in current implementations, the sheer amount
of prefixes to be processed in a serial manner in phase 2, is likely to be a major con-
tributor to the problem. Because of this, the most effective solution would be to devise
a means to be able to share the work, as is the case in phase 1. Therefore, in section
5.2.1 an addition to the BGP defined structures is proposed to allow multiple threads to
simultaneously operate without violating the existing BGP rules. The decision not to
meddle with the core mechanics, such as locking and phase progression, has been made
because insufficient time is available in this project to fully grasp the consideration and
consequences that fundamentally changing them may have on the operation of BGP.

This project recognizes, however, that even a mere addition to the BGP structure is
not done overnight. If the solution proves to be effective in a proof of concept, it would
still take more time before this would be implemented in a production viable BGP im-
plementation. For this reason, another solution has been proposed in section 5.3 that
can be used to share the work of phase 2 without requiring an alteration in BGP or
its implementations. Because these solutions propose the use of existing technologies,
such as load balancing and iBGP, this can be tested and implemented relatively quickly.
Although this solution does not allow for multi-threading in a classical sense, it does
allow for the work to be distributed over multiple BGP instances.

A more general observation done during this research, is that reducing the amount
of UPDATE messages sent in the first place, may somewhat relieve the entirety of BGP
from some load. A suggestion as to how this can be achieved is proposed in section
5.2.2, where we suggest working with hashes to reduce the amount of data that has to
be exchanged.

5.2 Protocol

On the protocol, two changes are proposed which should improve the convergence time
of the BGP system. Below the two solutions are explained in detail.

5.2.1 Phase 2 solution

When we presume the best-path selection (phase 2) is indeed the main issue with regards
to the increased convergence time, it is only logical that the problem should be addressed
here. Because the observation in the testbed has been that indeed an extended period of
time exists where a single core is fully utilized, it makes sense to attempt to multi-thread
this, as to increase the amount of processing that can take place. When following the
RFC rules, it is mandatory to lock all Adj-RIBs-In before proceeding with the best-path
calculation. In doing so, any attempt to run these calculations in parallel would not
be possible as the data required to do so would be inaccessible. While the reason for
this is not mentioned in the RFC, one can see it is an effective measure to maintain
consistency throughout the phases and their progression. In other words, while phase 2
is running, no other processes can access the data mid-calculation. In order to allow for
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this, one solution would be to alter the rules of locking and access. However, because
such a change can fundamentally impact the operation of BGP and we do not possess
enough insight in the software engineering field to assure no other additional problems
would be created, we have opted for a solution that abides by the existing RFC rules.

Therefore, the first change proposed here is the addition of another Adj-RIB-In between
the Adj-RIB-In and the Loc-RIB. This extra Adj-RIB-In is sorted on prefix rather than
sorted on peer, as is the case with the original Adj-RIB-In. The main advantage this
offers, is that the locking issue in phase 2 as explained in section 2.2.3 does not pose an
issue anymore.

Figure 13: Graphical representation of the proposed solution in phase two

In this new proposed flow, shown in figure 13, whenever a peer sends an UPDATE
message, first all prefixes are put into the Adj-RIB-In for that specific peer, just as in
the current situation. Phase one, as described before in section 2.2.3, is executed as
normal. The differences start from this point on, as between phase one and phase two,
all prefixes in the Adj-RIB-In are put in another Adj-RIB-In. However, this Adj-RIB-In
is sorted per prefix. This means each prefix gets its own Adj-RIB-In. All peers can write
new paths for that prefix in the prefix’s Adj-RIB-In.

When phase two wants to start, it only requires to lock the Adj-RIB-In for the pre-
fix it wants to calculate the best path for. This means no locking issues occur with
this process. When a peer sends an UPDATE message containing a prefix for which
the BGP process is calculating the best path for, thus the Adj-RIB-In for that prefix is
locked, this path will be held in the peers Adj-RIB-In until the BGP daemon is done
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with calculations for that prefix and unlocks the prefix’ Adj-RIB-In.

The main benefit of this solution is that now phase two could be multi-threaded, one
thread per prefix. This could potentially drastically improve convergence time, as the
BGP daemon can finally utilize all available processing power during phase two.

It is good to note that, just as in the original RFC 4271, the solution provided above is a
conceptual solution, meaning it does not have to be implemented precisely as described
as long as the implementations support the described functionality and they exhibit the
same externally visible behavior. This is specifically mentioned here because in some
implementations the second Adj-RIB-In, based on prefix, could be optimized in terms
of memory usage, as a table per prefix could require lots of memory.

5.2.2 Hashing mechanism

While performing the link-flaps in the testbed, we considered that it might not even be
necessary for all peers to disseminate their entire RIBs again. If the amount of UP-
DATE messages can be reduced, this may contribute to reducing the load on a BGP
implementation for all phases. Admittedly, this suggestion would not help as much in
reducing the work that has to be done particularly in phase 2 as compared to the prefix-
based Adj-RIBs-In. The reason being that if the peer providing the current best route
to a prefix disconnects, its entry in the Loc-RIB should be invalidated, recalculate and
reconsider all remaining available routes. However, avoiding any unnecessary workload
on the route server may help to spend these resources elsewhere, where they are needed
to process UPDATE messages.

The second solution on protocol level is therefore based on a hashing mechanism that
should take place on both the peer (that sends an UPDATE) and the route server (that
receives an UPDATE). These large UPDATE messages full of NLRIs can be avoided by
means of exchanging just hashes to validate the data in the route server still matches
the data in the peers Adj-RIB-Out.

The peer would send an OPEN message to the route server. This OPEN message
should include a hash of the routes it will be sending to the route server. The route
server should then keep track of all routes and hashes it got from its peers in memory.
As soon as the route server receives an OPEN message from a peer, after a link flap, the
route server compares this hash with the previous hash it had calculated for that peer.
When the hashes match, the route server still has the latest information from that peer
thus that peer does not have to send its full table to the route server.

An important caveat here is that while the information sent by the peer may not have
changed, the policy on the route server potentially could have changed, essentially ne-
cessitating the reprocessing of routing information. If this situation occurs, the peer
could be asked to send the RIB nonetheless or soft-reconfiguration can be used when
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enabled. In that case, the soft-reconfiguration table for that peer will already have all
data available and validates this is still up-to-date by means of the hash.

Figure 14: Graphical representation of the hashing solution

Figure 14 shows the flow diagram of how the hashing should work in practice. When
peer X ends phase three, the peer should calculate a hash from the contents of its RIB-
Out. The contents of its RIB-Out should be similar to the contents of the Adj-RIB-In on
the route server before processing. The peer sends UPDATE messages with its routing
information to the route server. As soon as the route server gets an End-of-RIB, the
Adj-RIB-In should be filled with all information peer X wanted to send to the route
server. At this point the route server should calculate a hash of the contents of the
Adj-RIB-In for that peer. Important to notice here is that the Adj-RIBs-In need to
be persistent, as opposed to normal operation. The route server now has a persistent
Adj-RIB-In for that peer, including a hash calculated from the contents.

In case of a link flap, the peer notices the route server was unavailable for some time due
to the KEEPALIVE and Hold-Down timers timing out. The peer tries to send OPEN
messages to the route server to establish the BGP session again. This OPEN message
should now also include the hash it had calculated before, on the RIB-Out. The route
server kept all Adj-RIB-In information, including the hashes. As soon as the route server
is reachable again, it receives the OPEN message from the peer. The route server will
extract the hash from the OPEN message and compare that hash with the hash it had
stored for that peer. When the hashes match, thus the routing information from the
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peer did not change, the route server sends a NOTIFICATION message to the peer,
to signal it should not send its full table. When the hashes do not match, the route
server sends a NOTIFICATION message to the peer to signal it should send its routing
information.

A benefit of this hashing mechanism is that in case of a link flap on the route server, or
on multiple peers, not every peer will need to send its full routing information again if
nothing changed. It is a quick and easy way to verify if any changes occurred and if not,
it lowers the load on the route server to process all routes for all peers.

5.3 Implementation

On the implementation side a load balancing solution is proposed. While this does not
directly multi-thread the BGP daemon itself, it does allow the work, normally done by
a single BGP phase 2 process, to be performed in parallel. This solution may be partic-
ularly interesting as a short-term solution because it can be set up without altering any
existing RFC standards or code. In essence, best-path selection can then be calculated in
parallel as would be the case in a multi-threaded daemon. On one side clients can set up
peering to the load balancer. On the other side multiple route servers are connected in a
full iBGP mesh with each other, besides having an eBGP connection to the load balancer.

Figure 15 shows the external side in front of the load balancer. On this side the load
balancer exposes a single IP address where all customers can connect to by means of
eBGP. The load balancer will then forward the BGP packets to a route server, while
balancing the number of peers per route server. Effectively the BGP sessions are set up
to one of the route servers through the load balancer.
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Figure 15: Graphical representation of the load balancing solution

Figure 16 shows the internal side behind the load balancer. On this side a cluster of
route servers is connected in a full iBGP mesh, including an eBGP connection towards
the load balancer. The example in figure 15 shows a total of five route servers. Say
that 500 peers set up peering to the load balancer. The load balancer does its job and
balances the load so that each route server has 100 established external peers. Besides
these peers, the route servers also peer with each other resulting in a total of 104 peers
per route server. In general one can say that the number of peerings per route server is
equal to i

j + j− 1 where i = number of customers, j = number of route servers and z =
number of peerings per route server. The number of peerings per route server is equal
to the number of customers divided by the number of route servers plus the number of
route servers minus 1 (itself).

In this example it comes down to 500
5 + 5 − 1 = 100 + 4 = 104.
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Figure 16: Graphical representation of the load balancing solution

The load is now spread over multiple servers, so instead of one route server having
to calculate paths for 500 peers, it now has to calculate paths for 104 peers. The best
path calculation is now divided over the other route servers which will only announce
a best path. Although the graphical representation shows multiple route servers, this
could also be implemented on one physical server with multiple BGP daemons running.
Another benefit is that all customers can configure their routers to connect to a single IP
address, namely the address of the load balancer. The load balancer will then forward
connections to the appropriate route server. Implementing this without a load balancer,
but with multiple route servers, would require additional administration of which cus-
tomer is configured on which route server. As [23] shows, it could be beneficial to, when
load balancing is implemented, also tweak the maximum MTU size. In the presentation
it shows that changing the MTU from 1500 to 9000 bytes, improves convergence time
by 33%.

Ideally, the load balancer and multiple iBGP processes would run on the same server.
By doing this, the resources of commodity hardware are utilized more effectively. This
also reduces some reliability on the network infrastructure for iBGP communication.
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While configuration management tools may allow for effective configuration of such an
environment with multiple daemons, it may be more beneficial to let a single implemen-
tation set up multiple iBGP processes in a smarter way to attain improved (dynamic)
distribution of work and manageability.
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6 Discussion

Due to BGP currently being the only EGP in use, any shortcomings that may arise will
have to be addressed in order to continue the exchange of route information over the
Internet in a reliable manner as the Internet continues to grow.

Currently, only relatively large BGP implementations, such as IXPs are experiencing
scaling problems. The testbed used in this project aimed to roughly mimic these envi-
ronments. Notably, BGP attributes have been intentionally unmodified as there was no
indication this would affect the convergence times while only increasing complexity. The
tests conducted showed a significant increase in convergence time while solely tweaking
with the amount of peers and prefixes. It is worth noting that the measurements pro-
duced by conducting the tests are not significant in an absolute sense. If one was to use
a testbed with a high clock rate, the convergence times would probably be lower. What
the research does show is that a significant increase can be observed relative to other
measurements done within the same testbed.

The way forward to go about resolving it was to identify the main issue. While it was
clear the single-threaded nature of BIRD was causing the increased time before work
was completed, other implementations seemed to suffer the same problem. Because of
this, the search for the root cause was likely in the BGP standard itself. Some sus-
picion existed that particularly the route dissemination phase was burdening the BGP
process. Although we cannot conclude it with unequivocal certainty, experiments con-
ducted show this is likely not the case. Also, the receiving and parsing of packets is also
unlikely to be the culprit due to this part being multi-threaded in some implementations.

Because of this, the best-path calculation is suspected being the lead cause. This idea
is supported by the fact that no implementation in production has multi-threaded this
so far, explaining the observation of a single core being pushed to its limits.

One of the proposed solutions called for an addition of tables to the ones currently
described in the BGP standard. Because the change does not really touch existing BGP
mechanisms, implementing it into existing BGP applications is realistic. Additionally,
the processing of updates is a local matter and it is not required for both BGP speakers
to have a prefix-based Adj-RIB-in capability. Although this may require some coordi-
nation between the parallelized phases with regards to phase progression, there is no
indication that limiting the scope of a process to a single prefix changes the end result
of the best-path calculation in any way. However, standardization would be required
before the general public would accept this addition, which would be a lengthy process.

The load-balancing solution, on the other hand, would not need to be standardized
in this way. The main aim here is to propose an intuitive solution that is implementable
today. While this can be distributed over multiple machines in the network, doing this
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on a single machine would reduce complexity and be more efficient. Additionally, most
commodity hardware would be sufficient as multi-core CPUs are widespread. Although
a BGP load-balancing system may be created by installing and configuring the software
packages manually or through configuration management tools, it may be beneficial to
put all features (load-balancing, multiple BGP instances) under a multi-threaded process
for (dynamic) distribution of work and manageability.
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7 Conclusion

This project has contributed to the identification of processes which are causing excessive
convergence times in large scale deployments of BGP. It has shown the reported behavior
is reproducible and determines the scale and properties in which the phenomenon can
be expected to occur. Furthermore, this project has shown that it is not bound to BIRD
but that it is likely a broader issue.

While working with the testbed developed for this research, measurements have shown no
significant difference in completion time with and without route dissemination enabled.
This is contradictory with the supposition, found within the networking community, that
the transmitting of UPDATE messages (phase 3) is the main culprit of CPU resource
consumption[27].

Based on the background research and experiments performed within this project, the
hypothesis that the best-path selection (phase 2) within BGP is hogging the resources
in lieu of route dissemination (phase 3) is more probable. In order to counter increasing
convergence times affecting the stability of some BGP environments in the future, this
project has proposed multiple solutions to do so.

The first recommendation is to append prefix-based Adj-RIBs-In to the BGP stan-
dard. This allows for multi-threaded best-path selection while leaving the existing BGP
locking and phase-progression mechanics untouched. It is also recognized that avoiding
large updates by means of hashing can provide additional benefits by reducing the over-
all workload.

Another solution proposes the division of work over multiple threads without chang-
ing existing BGP mechanics. Central to this, is the use of load-balancing and iBGP.
While overhead can be expected even if the optimizations suggested in this research are
implemented, there will be a tipping point at which it will outperform current single-
process implementations.
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8 Future work

While this research has shown it is reasonable to assume that the problem described
is due to BGP phase three serialization, it has not been definitively proven. In order
to definitely confirm this, the code of a BGP implementation should be thoroughly de-
bugged while running test scenarios. Although this project has partially done this by
using the debug feature, it is unable to clearly distinguish the time spent in each phase
as to identify the culprit. Even then it may be implementation dependent. However,
the fact that more, if not all, current implementations suffer the same issue suggests a
common bottleneck.

Additionally, during this project the testbed reached a scale in which the increased
convergence time was observed. Whether the increase in peers or the increase in prefixes
played a primary role in this, remains uncertain. The testbed had reached its limit due
to the available hardware for this project. This limited the tests to 800 peers with 10.000
prefixes for the non-unique scenario. For unique prefixes, the route server itself ran out
of memory. It would be interesting to scale up the testbed further to identify:

• The progression of convergence times as the number of peers and prefixes increase.

• Comparing the convergence time of unique to non-unique as to rule out the tie-
breaking mechanism contributing to the high utilization.

Lastly, both proposed implementations will need to be tested in a proof of concept.
With the load balancing solution, the main concern will be reducing the overhead cost
and finding a point where it is more feasible to implement such an architecture in favor
of a single BGP instance. For the addition of prefix based Adj-RIBs-In, the challenge
lies in efficient use of memory and complying with the RFC.
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Appendix A Many-to-one scenario results

Number of prefixes 100 1.000 10.000

Run 1 12 4 4

Run 2 4 4 3

Run 3 7 6 10

Average 7,67 4,67 5,67

Table A8: Convergence time in seconds with 10 peers

Number of prefixes 100 1.000 10.000

Run 1 31 5 11

Run 2 7 5 12

Run 3 7 16 12

Average 15 8,67 11,67

Table A9: Convergence time in seconds with 100 peers

Number of prefixes 100 1.000 10.000

Run 1 8 21 27

Run 2 29 12 49

Run 3 7 19 40

Average 14,67 17,33 38,67

Table A10: Convergence time in seconds with 200 peers

Number of prefixes 100 1.000 10.000

Run 1 20 12 49

Run 2 13 16 78

Run 3 12 13 48

Average 15 13,67 58,33

Table A11: Convergence time in seconds with 300 peers

Number of prefixes 100 1.000 10.000

Run 1 20 42 75

Run 2 32 35 83

Run 3 25 53 105

Average 25,67 43,33 87,67

Table A12: Convergence time in seconds with 400 peers
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Number of prefixes 100 1.000 10.000

Run 1 14 94 79

Run 2 16 71 115

Run 3 44 63 170

Average 24,67 76 121,33

Table A13: Convergence time in seconds with 500 peers

Number of prefixes 100 1.000 10.000

Run 1 43 39 241

Run 2 38 38 265

Run 3 40 54 281

Average 40,33 43,67 262,33

Table A14: Convergence time in seconds with 600 peers

Number of prefixes 100 1.000 10.000

Run 1 29 46 380

Run 2 90 52 431

Run 3 31 51 280

Average 50 49,67 363,67

Table A15: Convergence time in seconds with 700 peers

Number of prefixes 100 1.000 10.000

Run 1 75 49 446

Run 2 65 82 457

Run 3 66 73 322

Average 68,67 68 408,33

Table A16: Convergence time in seconds with 800 peers
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Appendix B BIRD Configuration

### Begin Example Configuration

log "/var/log/bird.log" all;
log syslog all;
watchdog warning 1s
debug protocols { states, interfaces, events, packets }

debug latency on
debug latency limit 1s
router id 10.0.8.2;
define myas = 65000;

protocol device { }

### The following function excludes weird networks such as
### rfc1918, class D, class E, and too long or too short prefixes

function avoid_martians()
prefix set martians;
{
martians = [ 169.254.0.0/16+, 172.16.0.0/12+, 192.168.0.0/16+, 10.0.0.0/8+,
224.0.0.0/4+, 240.0.0.0/4+, 0.0.0.0/32-, 0.0.0.0/0{25,32}, 0.0.0.0/0{0,7} ];

### Avoid RFC1918 and similar networks
if net ˜ martians then return false;
return true;
}

function avoid_crappy_prefixes()
{
if net.len < 8 then return false;
if net.len > 29 then return false;
return true;
}

### Protocol Template

template bgp PEERS {
local as myas;
import all;
export all;
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import limit 1000000000;
rs client;
passive on;
}

### Generic Input Filter

filter bgp_in {
if avoid_martians() && avoid_crappy_prefixes() then accept;
else reject;
}

### BGP output filter (based on communities)

function bgp_out(int peeras)
{
if ! (source = RTS_BGP ) then return false;
if peeras > 65535 then return true; ### communities do not support AS32
if (0,peeras) ˜ bgp_community then return false;
if (myas,peeras) ˜ bgp_community then return true;
if (0, myas) ˜ bgp_community then return false;
return true;
}
protocol bgp R_654 from PEERS {
description "R_654 - peer 4";
neighbor 10.0.8.4 as 654;
import filter bgp_in;
export where bgp_out(654);
}
protocol bgp R_655 from PEERS {
description "R_655 - peer 5";
neighbor 10.0.8.5 as 655;
import filter bgp_in;
export where bgp_out(655);
}

. . .
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Appendix C GoBGP Configuration

[global.config]
as = 65000
router-id = "10.0.8.2"

[[neighbors]]
[neighbors.config]

neighbor-address = "10.0.8.4"
peer-as = 654

[neighbors.transport.config]
passive-mode = true

[neighbors.route-server.config]
route-server-client = true

[[neighbors]]
[neighbors.config]

neighbor-address = "10.0.8.5"
peer-as = 655

[neighbors.transport.config]
passive-mode = true

[neighbors.route-server.config]
route-server-client = true

. . .
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