Lambda-Grid developments, RDF, AAA and StarPlane

Cees de Laat

SURFnet

BSIK

EU

University of Amsterdam

SARA

TNO

NCF
DAS = Distributed ASCI Supercomputer

• Project DAS-1 started in 1997 by Andrew Tanenbaum
• To prove distributed clusters were as effective as super...
• 4-5 clusters connected via high speed links
 – DAS-1 -> 6 Mbit/s full mesh ATM
 – DAS-2 -> Gbit/s L3
 – DAS-3 -> StarPlane

• DAS-1 and 2 uniform architecture, not so in DAS-3
• http://www.cs.vu.nl/das/
SURFnet6 Architecture discussions 2001-2002

- photonic backbone
- L1 - L3 services
- NORTEL
- Static provisioning
- Summer 2004 K&C
- NWO-GLANCE
- StarPlane
- PHD-PD-SP

The StarPlane vision is to give flexibility directly to the applications by allowing them to choose the logical topology in real time, ultimately with sub-second lambda switching times on part of the SURFnet6 infrastructure.

ref: cdl-2002-01-18-UCL-opt.ppt
A. Lightweight users, browsing, mailing, home use
 Need full Internet routing, one to many
B. Business/grid applications, multicast, streaming, VO’s, mostly LAN
 Need VPN services and full Internet routing, several to several + uplink
C. E-Science applications, distributed data processing, all sorts of grids
 Need very fat pipes, limited multiple Virtual Organizations, few to few

For the Netherlands 2005
\[\Sigma A = \Sigma B = \Sigma C \approx 100 \text{ Gb/s} \]
However:
- A -> all connects
- B -> on several
- C -> just a few (SP, LHC, LOFAR)
The VMs that are live-migrated run an iterative search-refine-search workflow against data stored in different databases at the various locations. A user in San Diego gets hitless rendering of search progress as VMs spin around.
The “Dead Cat” demo
SC2004 & iGrid2005

SC2004,
Pittsburgh,
Nov. 6 to 12, 2004

Produced by:
Michael Scarpa
Robert Belleman
Peter Sloot

Many thanks to:
AMC
SARA
GigaPort
UvA/AIR
Silicon Graphics, Inc.
Zoölogisch Museum
How low can you go?
In The Netherlands SURFnet connects between 180:
- universities;
- academic hospitals;
- most polytechnics;
- research centers.
with an indirect ~750K user base

~ 6000 km scale comparable to railway system
Subnetwork 4: Blue Azur

Subnetwork 3: Red

Subnetwork 1: Green

Subnetwork 2: Dark blue

supports up to 72 Lambda’s of 10 G each and 40 G soon.
Module Operation

> this schematic shows
 • several input fibres and one output fibre
 • light is focused and diffracted such that each channel lands on a different MEMS mirror
 • the MEMS mirror is electronically controlled to tilt the reflecting surface
 • the angle of tilt directs the light to the correct port

> in this example:
 • channel 1 is coming in on port 1 (shown in red)
 • when it hits the MEMS mirror the mirror is tilted to direct this channel from port 1 to the common
 • only port 1 satisfies this angle, therefore all other ports are blocked

ref Eric Bernier, NORTEL
Solution in 5 easy steps for dummy’s:

• try to figure out $T(f)$ by trial and error
• invert $T(f) \rightarrow T^{-1}(f)$
• computationally convolute $T^{-1}(f)$ with Fourier transform of bit pattern to send
• inverse Fourier transform the result from frequency to time space
• modulate laser with resulting $f(t) = F^{-1}(F(h(t))*T^{-1}(f))$

$F^{-1}(F(h(t))*T^{-1}(f))$ $T(f)$ $F^{-1}(F(F^{-1}(F(h(t))*T^{-1}(f)))*T(f)) \rightarrow h(t)$
QOS in a non destructive way!

• Destructive QOS:
 – have a link or λ
 – set part of it aside for a lucky few under higher priority
 – rest gets less service

• Constructive QOS:
 – have a λ
 – add other λ‘s as needed on separate colors
 – move the lucky ones over there
 – rest gets also a bit happier!
StarPlane

DWDM
backplane
DAS-3 Cluster Tender

http://www.clustervision.com/pr_das3_uk.html

10 Gbit/s Ethernet lanphy

To local University

1 Gbit/s Ethernet

Local interconnect

85 compute nodes

Fast interconnect

To SURFnet

10 Gbit/s Ethernet lanphy

UvA-node

head node (2)

NORTEL

MYRINET
GRID-Colocation problem space

Extensively under research

New!
Simple service access

Pitlochry, Scotland - Summer 2005
Three Easy Steps:

1. Click the START button.
2. Insert money...
 - $0.25 per minute...
 - Example: $1 = 4 minutes
 - $5 = 20 minutes
 - No change is provided!
3. Surf the web!
OUT OF ORDER
Use AAA concept to split (time consuming) service authorization process from service access using secure tokens in order to allow fast service access.
1. User (on Node1) requests a path via web to the WS.
2. WS sends the XML requests to the AAA server.
3. AAA server calculates a hashed index number and submits a request to the Scheduler.
4. Scheduler checks the SCHEDULE and add new entry.
5. Scheduler confirms the reservation to the AAA.
6. AAA server updates the POLICY_TABLE.
6a. AAA server issues an encrypted key to the WS.
6b. AAA server passes the same key to the PEP.
7a. WS passes the key to the user.
7b. AAA server interacts with PEP to update the local POLICY_TABLE on the PEP.
8. User constructs the RSVP message with extra Token data by using the key and sends to VLSR-1.
9. VLSR-1 queries PEP whether the Token in the RSVP message is valid.
10. PEP checks in the local POLICY_TABLE and return YES.
11. When VLSR-1 receives YES from PEP, it forwards the RSVP message.
12. All nodes process RSVP message (forwarding/response).
13. The Ethernet switches are configured.
14. LSP is set up and traffic can flow.
Network Description Language

- From semantic Web / Resource Description Framework.
- The RDF uses XML as an interchange syntax.
- Data is described by triplets:
NDL Example

```xml
<ndl:Device rdf:about="#Rembrandt3">
    <ndl:name>Rembrandt3</ndl:name>
    <ndl:locatedAt rdf:resource="#Lighthouse"/>
    <ndl:hasInterface rdf:resource="#Rembrandt3:eth0"/>
</ndl:Device>

<ndl:Interface rdf:about="#Rembrandt3:eth0">
    <ndl:name>Rembrandt3:eth0</ndl:name>
    <ndl:connectedTo rdf:resource="#Speculaas:port3"/>
</ndl:Interface>
```
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ndl="http://www.science.uva.nl/research/air/ndl#">
<!-- Description of Netherlight -->
<ndl:Location rdf:about="#Netherlight">
 <ndl:name>Netherlight Optical Exchange</ndl:name>
</ndl:Location>
<!-- TDM3.amsterdam1.netherlight.net -->
<ndl:Device rdf:about="#tdm3.amsterdam1.netherlight.net">
 <ndl:name>tdm3.amsterdam1.netherlight.net</ndl:name>
 <ndl:locatedAt rdf:resource="#amsterdam1.netherlight.net"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:501/1"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:501/3"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:501/4"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:503/1"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:503/2"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:503/3"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:503/4"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:504/1"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:504/2"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:504/3"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:504/4"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:501/2"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:501/3"/>
 <ndl:hasInterface rdf:resource="#tdm3.amsterdam1.netherlight.net:501/4"/>
</ndl:Device>
<!-- all the interfaces of TDM3.amsterdam1.netherlight.net -->
</rdf:RDF>
NDL Generator and Validator

Step 1 - Location
Indicate the name and a short description of the network that is going to be described in NDL.

Name: Lighthouse
Description: SHE Lab

Provide also the latitude and the longitude of this location: this will aid the visualization programs. Both latitude and longitude should use floating point notation.

Latitude: 52.3651
Longitude: 4.9527

Step 2 - Devices
Indicate the name of all the devices present in the network. If you need to describe more than 3 devices just "Add a Device".

Device: Rembrandt3
Device: Speculaas
Device:

Add a Device

see http://trafficlight.uva.netherlight.nl/NDL-demo/
NDL SN6
Visualisation
Current status: NDL

NDL - Network Description Language - an RDF based model for hybrid network descriptions.

It leverages all the semantic web tools, to provide:
- parsing of the RDF files
- graphs and visualization of connections and lightpaths
- lightpath provisioning support at inter and intra domain level.

Latest developments were presented at the GLIF meeting in Sep. ’06.
What makes StarPlane fly?

- Wavelength Selective Switches
 - for the “low cost” photonics
- Sandbox by confining StarPlane to one band
 - for experimenting on a production network
- Optimization of the controls to turn on/off a Lambda
 - direct access to part of the controls at the NOC
- electronic Dynamically Compensating Optics (eDCO)
 - to compensate for changing lengths of the path
- traffic engineering
 - to create the OPN topologies needed by the applications
- Open Source GMPLS
 - to facilitate policy enabled cross domain signalling
Questions ?