The case for Normware

Giovanni Sileno (g.sileno@uva.nl)
SNE group meeting, 21 February 2019

Extension, refinement of what presented in:
Sileno, G., Boer, A. and van Engers, T., The Role of Normware in Trustworthy and Explainable AI, Proceedings of XAILA workshop: Explainable AI and Law, in conjunction with JURIX 2018
with the (supposedly) near advent of autonomous artificial entities, or any other forms of distributed automatic decision making,

- humans less and less in the loop
- increasing concerns about unintended consequences
Unintended consequences:
bad or limited design
Unintended consequences: bad or limited design

![Diagram]

- programmer
- program

implementation fault (bugs)
Unintended consequences: bad or limited design

design fault (relevant scenarios not considered)

specifications, use cases → programmer

incremental or design and testing development

program → implementation fault (bugs)
Unintended consequences: bad or limited design

- Example: **Heartbleed Bug** with OpenSSL (CVE-2014-0160)
 - weakness allows stealing the information protected, under normal conditions, by the SSL/TLS encryption used to secure the Internet.
 - bug was introduced in December 2011 and has been out in the wild since OpenSSL release 1.0.1 on 14th of March 2012. OpenSSL 1.0.1g released on 7th of April 2014 fixes the bug.
Unintended consequences: bad or limited design

- Wallet hacks, fraudulent actions and bugs in the blockchain sector during 2017:
 - CoinDash ICO Hack ($10 millions)
 - Parity Wallet Breach ($105 millions)
 - Enigma Project Scum
 - Parity Wallet Freeze ($275 millions)
 - Tether Token Hack ($30 millions)
 - Bitcoin Gold Scam ($3 millions)
 - NiceHash Market Breach ($80 millions)

Source: CoinDesk (2017), Hacks, Scams and Attacks: Blockchain's 2017 Disasters
Unintended consequences: the “artificial prejudice”

- specifications, use cases
- programmer
- ML method
- learning data
- black box

- incremental or design and testing development
- statistical bias
- parameters adaptation
- incorrect judgment
Unintended consequences: the “artificial prejudice”

- Software used across the US predicting future crimes and criminals biased against African Americans (2016)

Unintended consequences: the “artificial prejudice”

- Software used across the US predicting future crimes and criminals biased against African Americans (2016)
 - Existing statistical bias (correct description)
 - When used for prediction on an individual it is read as *behavioural predisposition*, i.e. it is interpreted as a *mechanism*.
 - A biased judgment introduces here negative consequences in society.

Unintended consequences: the “artificial prejudice”

- Software used across the US predicting future crimes and criminals biased against African Americans (2016)

- **Problem**: role of *circumstantial evidence*, how to integrate statistical inference in judgment?

Software used across the US predicting future crimes and criminals biased against African Americans (2016)

Problem: role of *circumstantial evidence*, how to integrate statistical inference in judgment?

Unintended consequences: the “artificial prejudice”

Improper profiling?

DNA
footwear
... origin, gender, ethnicity, wealth, ...

Unintended consequences: the “artificial prejudice”

- Software used across the US predicting future crimes and criminals biased against African Americans (2016)

- **Problem**: role of *circumstantial evidence*, how to integrate statistical inference in judgment?

- **DNA**, **footwear**, …
- origin, gender, ethnicity, wealth, …

Norms determine which factors are acceptable or not.
The “improvident” qualification to an inductive inference might be given already before taking into account the practical consequences of its acceptation.
Unacceptable conclusions: improvident induction

- Country A’s army demands a classifier to recognize whether a tank is from country A or country B. It provides the developers with a series of photos of tanks from both countries.
Unacceptable conclusions: improvident induction

- Country A’s army demands a classifier to recognize whether a tank is from country A or country B. It provides the developers with a series of photos of tanks from both countries.

- After the training, the developers investigate by introspection the activation patterns. They discover that “daylight” is a major factor supporting a B-tank classification. Returning on the source data, the developers discovered that there was no photo of B-tanks at night.
Country A’s army demands a classifier to recognize whether a tank is from country A or country B. It provides the developers with a series of photos of tanks from both countries.

After the training, the developers investigate by introspection the activation patterns. They discover that “daylight” is a major factor supporting a B-tank classification. Returning on the source data, the developers discovered that there was no photo of B-tanks at night.

Unacceptable conclusions: imprudent induction
Country A’s army demands a classifier to recognize whether a tank is from country A or country B. It provides the developers with a series of photos of tanks from both countries.

After the training, the developers investigate by introspection the activation patterns. They discover that "daylight" is a major factor supporting a B-tank classification. Returning on the source data, the developers discovered that there was no photo of B-tanks at night.

Unacceptable conclusions: imprudent induction

1. Move the focus from software engineering to data engineering
Country A’s army demands a classifier to recognize whether a tank is from country A or country B. It provides the developers with a series of photos of tanks from both countries.

After the training, the developers investigate by introspection the activation patterns. They discover that "daylight" is a major factor supporting a B-tank classification. Returning on the source data, the developers discovered that there was no photo of B-tanks at night.

1. move the focus from software engineering to data engineering

photo of B-tanks at night.

2. an expert would reject the conclusion when no relevant mechanism can be imagined linking factor with conclusion.
Problems may also arise for the statistical inference by itself, as shown e.g. by **Simpson’s paradox**.
Unacceptable conclusions: improvident induction

Example: hired/applicants data

- Problems may also arise for the statistical inference by itself, as shown e.g. by Simpson’s paradox

Unacceptable conclusions: improvident induction

Example: hired/applicants data

- Problems may also arise for the statistical inference by itself, as shown e.g. by **Simpson’s paradox**

Only causal mechanisms enable to select an interpretation.
Explainable AI

• Explainable AI has basically two drivers:
 – reject unacceptable conclusions
 – satisfy reasonable requirements of expertise

• But what qualifies a conclusion as “unacceptable”? And what might be used to define an expertise to be “reasonable”??
Explainable AI

- Explainable AI has basically two drivers:
 - reject unacceptable conclusions
 - satisfy reasonable requirements of expertise

- But what qualifies a conclusion as “unacceptable”? And what might be used to define an expertise to be “reasonable”?

- claim: normware!

 i.e. computational artifacts specifying shared expectations
 (“norm” as in normality)
Trustworthy AI

- **Trustworthiness** for artificial devices could be associated to the requirement of not falling into *paperclip maximizer* scenarios:
 - of not taking “wrong” decisions, of performing “wrong” actions, wrong because having disastrous impact

- How to (attempt to) satisfy this requirement?
Trustworthy AI

- **Trustworthiness** for artificial devices could be associated to the requirement of not falling into *paperclip maximizer* scenarios:
 - *of not taking “wrong” decisions, of performing “wrong” actions, wrong because having disastrous impact*

- How to (attempt to) satisfy this requirement?

- claim: **normware**!
 i.e. *computational artifacts specifying shared drivers* (*“norm” as in normativity*)
A tentative taxonomy

<table>
<thead>
<tr>
<th>hardware</th>
<th>software</th>
<th>normware</th>
</tr>
</thead>
<tbody>
<tr>
<td>physical device</td>
<td>symbolic device</td>
<td>..................</td>
</tr>
<tr>
<td>when running → physical mechanism</td>
<td>when running → symbolic mechanism</td>
<td>relies on symbolic mechanisms</td>
</tr>
<tr>
<td>situated in a physical environment</td>
<td>relies on physical mechanisms</td>
<td>..................</td>
</tr>
</tbody>
</table>

control structure | **control structure** | |
A tentative taxonomy

hardware
- physical device
- when running → physical mechanism
- situated in a physical environment

software
- symbolic device
- when running → symbolic mechanism
- relies on physical mechanisms

normware
-
-
- relies on symbolic mechanisms

Is normware just a type of software?
A tentative taxonomy

hardware

- physical device
- when running → physical mechanism
- situated in a physical environment

software

- symbolic
- when running → symbolic mechanism
- relies on physical mechanisms

normware

- normative
- epistemic pluralism?

Is normware just a type of software?

Interaction with sub-symbolic modules?
Traditionally, engineering is about the conception of devices to implement certain functions. Functions are always defined within a certain operational context to satisfy certain needs.
Impact at large

- Traditionally, engineering is about the conception of devices to implement certain functions. Functions are always defined within a certain operational context to satisfy certain needs.

- Optimization is made possible by specifying a reward function associated to certain goals.
Impact at large

goal: fishing,
reward: proportional to quantity of fish, inversely to effort.

individual solution to optimization problem:
Impact at large

goal: fishing,
reward: proportional to quantity of fish, inversely to effort.

individual solution to optimization problem:

“fishing with bombs”
Impact at large

goal: fishing,
reward: proportional to quantity of fish, inversely to effort.

individual solution to optimization problem:

“fishing with bombs”

acknowledgement of undesirable second-order effects.
Impact at large

goal: fishing,
reward: proportional to quantity of fish, inversely to effort.

individual solution to optimization problem:

“fishing with bombs”

by whom? for whom?

acknowledgement of *undesirable* second-order effects.
Planning with adaptations

- The process illustrated a two steps decision-making process, enabling “tactical” optimization and “strategic” control.
Planning with adaptations

- We might add also the **operational** layer

perceptual setup

boundary reacting/acting

lower-level diagnostic feedback

tactical (planning)

boundary situational/contextual

intentional setup

higher-level diagnostic feedback

operational layer

- operational monitoring
- executor
- plan
- simulator
- strategic monitoring

planning with adaptations

- planning with adaptations
Supervised Machine Learning

input

adaptive

black box

feedforward

error

output

retroactive feedback

oracle

desired output
In general, supervised machine learning involves:
- a data-flow computational network
- parameters distributed along the network
- a ML method enabling adaptation of parameters against some feedback, e.g. output error in the training phase
- an oracle making targets explicit
Supervised Machine Learning

- In general, supervised machine learning involves:
 - a data-flow computational network
 - parameters distributed along the network
 - a ML method enabling adaptation of parameters against some feedback, e.g. output error in the training phase
 - an oracle making targets explicit

In general, supervised machine learning involves:

- a data-flow computational network
- parameters distributed along the network
- a ML method enabling adaptation of parameters against some feedback, e.g. output error in the training phase
- an oracle making targets explicit
In general, supervised machine learning involves:
- a data-flow computational network
- parameters distributed along the network
- a ML method enabling adaptation of parameters against some feedback, e.g. output error in the training phase
- an oracle making targets explicit

This seems the root of our problems with ML. Can we repair it?
In evolutionary terms, we could consider a multitude of different non-adaptive black-boxes, covering several configurations of parameters, competing for computational resources.

- For each learning step, the oracle sets the means to select the best performing black-box(es), for which access to computational resources for future predictions will be granted as a reward. [...]

- But who “pays” the oracle?
In evolutionary terms, we could consider a multitude of different non-adaptive black-boxes, covering several configurations of parameters, competing for computational resources.

- For each learning step, the oracle sets the means to select the best performing black-box(es), for which access to computational resources for future predictions will be granted as a reward. [...]

- The higher-level diagnostic feedback implies that also the system drivers should pass from a selection mechanism.
Evolutionary view

black box 1 → oracle 1

black box 2 → oracle 1

... → oracle 1

oracle 2

...
Let’s use this architecture on a concrete example: IBM Watson (building upon a network of intelligent QA agents).

- a question is given
- the system has to guess
 - what the question demands (~ oracles)
 - what is the answer (~ black-box),
- correct response is given by the jury (~ second-order oracle)
Let’s use this architecture on a concrete example: IBM Watson (building upon a network of intelligent QA agents).
- a question is given
- the system has to guess
 - what the question demands (~ oracles)
 - what is the answer (~ black-box).

Let’s apply it to our initial problems!
Example: neutrality constraint

- black box 1
- black box 2
- black box 3

training data
- a, b, c → class 1
- a, c, e → class 1

neutralized training data
- a, b, c → class 1
- a, b, d → class 2
- a, c, e → class 1

pruned training data
- a, b, c → class 1
- a, c, e → class 1

neutrality w.r.t. d
Example: strategic protection to unintended consequences

- **plan executor**
 - netting
 - fishing with bombs
- **tactical driver**
 - fish without disrupting
 - fish
- **strategic driver**
 - avoid ecological disruption
 - intentional setup

world

action

plan check

simulator
Example: alignment to expert knowledge for explanation

justification tracer

“a → b. a.”

“a → b. c.”

“c → b. c.”

explainers

explain b

a → b.

c → b.

align with expert

intentional setup

perceptual setup

alignment checking

a → b.

explanation check

a. c.
What normware consists of

- It has to be symbolic
 - contains knowledge: epistemic commitments

```plaintext
if flower and seed then phanerogam
if phanerogam and bare-seed then fir
if phanerogam and 1-cotyledon then monocotyledonous
if phanerogam and 2-cotyledon then dicotyledonous
if monocotyledon and rhizome then thrush
if dicotyledon then anemone
if monocotyledon and ¬rhizome then lilac
if leaf and flower then cryptogamous
if cryptogamous and ¬root then foam
if cryptogamous and root then fern
if ¬leaf and plant then thallophyte
if thallophyte and chlorophyll then algae
if thallophyte and ¬chlorophyll then fungus
if ¬leaf and ¬flower and ¬plant then colibacille
```

- expert systems
- semantic networks
What normware consists of

- It has to be symbolic
 - contains **knowledge**: *epistemic commitments*
 - contains **drivers**: *behavioural commitments*

deontic logics
(permission, obligation and prohibition)

hohfeldian prisms
types of obligations and powers
What normware consists of

- It has to be symbolic
 - contains **knowledge**: epistemic commitments
 - contains **drivers**: behavioural commitments
 - could transport some strength (partial ordering or degree)

Bayesian networks

CP-nets (**Ceteri Paribus**)

GAI networks
What normware consists of

• It has to be symbolic
 – contains **knowledge**: *epistemic commitments*
 – contains **drivers**: *behavioural commitments*
 – could transport some strength (partial ordering or degree)

• It has to reinforce some sort of “**conceptual spaces**” (for knowledge) and some sort of “**action spaces**” (for drivers)
What normware consists of

- It has to reinforce some sort of “conceptual spaces” (for knowledge) and some sort of “action spaces” (for drivers)
 - graduality
 - prototyping (to detect abnormalities)
 - analogy
 - solving the symbol grounding problem
What normware consists of

- It has to be symbolic
 - contains **knowledge**: *epistemic commitments*
 - contains **drivers**: *behavioural commitments*
 - could transport some strength (partial ordering or degree)

- It has to reinforce some sort of “**conceptual spaces**” (for knowledge) and some sort of “**action spaces**” (for drivers)
 - **graduality**
 - **prototyping** (to detect abnormalities)
 - **analogy**
 - solving the **symbol grounding problem**
Metaphorically

Machine learning

internalizing
desired
behaviour
Metaphorically

Machine learning

internalizing desired behaviour

Software development

hacking the brain
Metaphorically

Machine learning
internalizing desired behaviour

Software development
hacking the brain

Normware-based computing
providing guidelines, interacting with experiences
Perspectives

- This presentation highlighted the crucial role of normware with respect to trustworthy and explainable AI (→ computing)
 - ML approaches usually do not consider this level of abstraction
 - ethical/responsible AI studies target higher level constraints
Perspectives

This presentation highlighted the crucial role of normware with respect to trustworthy and explainable AI (→ computing)
 - ML approaches usually do not consider this level of abstraction
 - ethical/responsible AI studies target higher level constraints

It makes clear two perspectives on normware:
 - computational artifacts specifying norms
 - ecology of components guiding the system components
Perspectives

- This presentation highlighted the crucial role of **normware** with respect to trustworthy and explainable AI (→ computing)
 - ML approaches usually do not consider this level of abstraction
 - ethical/responsible AI studies target higher level constraints

- It makes clear two perspectives on normware:
 - computational artifacts specifying norms
 - ecology of components guiding the system components

including sub-symbolic ones!
Perspectives

- This presentation highlighted the crucial role of **normware** with respect to trustworthy and explainable AI (→ computing)
 - ML approaches usually do not consider this level of abstraction
 - ethical/responsible AI studies target higher level constraints

- It makes clear two perspectives on normware:
 - computational artifacts specifying norms
 - ecology of components guiding the system components including sub-symbolic ones!

- Focus on **incentive structures**
Perspectives

- This presentation highlighted the crucial role of **normware** with respect to trustworthy and explainable AI (→ computing)
 - ML approaches usually do not consider this level of abstraction
 - ethical/responsible AI studies target higher level constraints

- It makes clear two perspectives on normware:
 - computational artifacts specifying norms
 - ecology of components guiding the system components

- **Focus on incentive structures**

- The ecological perspective overlooked so far, but reminds of visionary ideas presented in the history of AI (Minsky’s **society of minds**, Brooks’ **intelligent creatures**).
A less tentative taxonomy

Hardware
- Physical device
- When running → physical mechanism
- Situated in a physical environment

Software
- Symbolic device
- When running → symbolic mechanism
- Relies on physical mechanisms

Normware
- Coordination device
- When *adopted* → interactional mechanism
- Relies on symbolic mechanisms

Control structure

Control structure

Guidance structure
Questions?

Acknowledgements:
This work was supported by NWO in the DL4LD project and VWDATA in the NWA Start-Impuls program.